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Abstract

In most approaches, tissue and subcortical structure segmentations of MR brain scans are handled glob-

ally over the entire brain volume through two relatively independent sequential steps. We propose a fully

Bayesian joint model that integrates within a multi-agent framework local tissue and structure segmen-

tations and local intensity distribution modelling. It is based on the specification of three conditional

Markov Random Field (MRF) models. The first two encode cooperations between tissue and structure

segmentations and integrate a priori anatomical knowledge. The third model specifies a Markovian

spatial prior over the model parameters that enables local estimations while ensuring their consistency,

handling this way nonuniformity of intensity without any bias field modelling. The complete joint model

provides then a sound theoretical framework for carrying out tissue and structure segmentations by dis-

tributing a set of local agents that estimate cooperatively local MRF models. The evaluation, using a

previously affine-registered atlas of 17 structures, was performed using both phantoms and real 3T brain

scans. It shows good results and in particular robustness to nonuniformity and noise with a low compu-

tational cost. The innovative coupling of agent-based and Markov-centered designs appears as a robust,

fast and promising approach to MR brain scan segmentation.

Key words:

1. Introduction

Difficulties in automatic MR brain scan segmentation arise from various sources. The nonuniformity

of image intensity results in spatial intensity variations within each tissue, which is a major obstacle to

an accurate automatic tissue segmentation. The automatic segmentation of subcortical structures is a
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challenging task as well. It cannot be performed based only on intensity distributions and requires the

introduction of a priori knowledge. Most of the proposed approaches share two main characteristics.

First, tissue and subcortical structure segmentations are considered as two successive tasks and treated

relatively independently although they are clearly linked: a structure is composed of a specific tissue,

and knowledge about structure locations provides valuable information about local intensity distributions.

Second, tissue models are estimated globally through the entire volume and then suffer from imperfections

at a local level. Alternative local procedures exist but are either used as a preprocessing step (Shattuck

et al., 2001a) or use redundant information to ensure consistency of local models (Rajapakse et al., 1997).

Recently, good results have been reported using an innovative local and cooperative approach (Scherrer

et al., 2007, 2009c). The approach is implemented using a multi-agent framework. It performs tissue

and subcortical structure segmentation by distributing through the volume a set of local agents that

compute local Markov Random Field (MRF) models which better reflect local intensity distributions.

Local MRF models are used alternatively for tissue and structure segmentations and agents cooperate

with other agents in their neighborhood for model refinement. Although satisfying in practice, these

tissue and structure MRF’s do not correspond to a valid joint probabilistic model and are not compatible

in that sense. As a consequence, important issues such as convergence or other theoretical properties of

the resulting local procedure cannot be addressed. In addition, in (Scherrer et al., 2009c), cooperation

mechanisms between local agents are somewhat arbitrary and independent of the MRF models themselves.

In this paper, we aim at filling in the gap between an efficient distributed system of agents and a joint

modelling accounting for their cooperative processing in a formal manner. Markov models with the

concept of conditional independence, whereby each variable is related locally (conditionally) to only a

few other variables, are good candidates to complement the symbolic level of the agent-based cooperation

with the numerical level inherent to the targeted applications.

Following these considerations, we propose a fully Bayesian framework in which we define a joint

model that links local tissue and structure segmentations but also the model parameters. It follows that

both types of cooperations, between tissues and structures and between local models, are deduced from

the joint model and optimal in that sense. Our model, originally introduced in (Scherrer et al., 2008)

and described in details in this chapter, has the following main features: 1) cooperative segmentation

of both tissues and structures is encoded via a joint probabilistic model specified through conditional

MRF models which capture the relations between tissues and structures. This model specifications also

integrate external a priori knowledge in a natural way; 2) intensity nonuniformity is handled by using a

specific parametrization of tissue intensity distributions which induces local estimations on subvolumes

of the entire volume; 3) global consistency between local estimations is automatically ensured by using a

MRF spatial prior for the intensity distributions parameters. Estimation within our framework is defined

as a maximum a posteriori (MAP) estimation problem and is carried out by adopting an instance of the
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Expectation Maximization (EM) algorithm (Byrne and Gunawardana, 2005). We show that such a setting

can adapt well to our conditional models formulation and simplifies into alternating and cooperative

estimation procedures for standard Hidden MRF models that can be implemented efficiently via a two

agent-layer architecture.

The chapter is organized as follows. In Section 2, we explain the motivation in coupling agent-

based and Markov-centered designs. In Section 3, we introduce the probabilistic setting and inference

framework. The joint tissue and structure model is described in more details in Section 4. An appropriate

estimation procedure is proposed in Section 5. Experimental results are reported in Section 6 and a

discussion ends the chapter.

2. Distributed cooperative Markovian agents

While Markov modelling has largely been used in the domain of MRI segmentation, agent-based

approaches have seldom been considered. Agents are autonomous entities sharing a common environment

and working in a cooperative way to achieve a common goal. They are usually provided with limited

perception abilities and local knowledge. Some advantages of multi-agent systems are among others

(Shariatpanahi et al., 2006) their ability: to handle knowledge from different domains, to design reliable

systems able to recover from agents with low performance and wrong knowledge, to focus spatially and

semantically on relevant knowledge, to cooperate and share tasks between agents in various domains, and

to reduce computation time through distributed and asynchronous implementation.

Previous work has shown the potential of multi-agent approaches for MRI segmentation along two

main directions : first of all as a way to cope with grey level heterogeneity and bias field effects, by

enabling the development of local and situated processing styles (Richard et al., 2007) and secondly,

as a way to support the cooperation between various processing styles and information types, namely

tissue and structure information (Germond et al., 2000; Scherrer et al., 2009a). Stated differently, multi-

agent modelling may be seen as a robust approach to identify the main lines along which to distribute

complex processing issues, and support the design of situated cooperative systems at the symbolic level

as illustrated in Figure 1. A designing approach has been furthermore proposed (Scherrer et al., 2009a)

to benefit from both Markov-centered and agent-based modelling toward robust MRI processing systems.

In the course of this work, however, we pointed out the gap existing between the symbolical level of the

agent-based cooperation and the numerical level of Markov optimization, this gap resulting in a difficulty

to ground formally the proposed design. In particular the mutual dependencies between the Markov

variables (tissue and structure segmentations on one hand, local intensity models on the other hand)

were handled through rather ad hoc cooperation mechanisms.
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The point here is then to start from the observation that Markov graphical modelling may be used

to visualize the dependencies between local intensity models, and tissue and structure segmentations,

as shown in Figure 2. According to this Figure, the observed intensities y are seen as reflecting both

tissue-dependent and structure dependent information. Tissues and structures are considered as mutually

dependent, since structures are composed of tissues. Also, the observed variations of appearance in tissues

and structures reflect the spatial dependency of the tissue model parameters to be computed. Figure

2 then illustrates the hierarchical organization of the variables under consideration and its adequation

with the agent hierarchy at a symbolic level. In the following section, we show that this hierarchical

decomposition can be expressed in terms of a coherent systems of probability distributions for which

inference can be carried out. Regarding implementation, we adopt subsequently the two agent-layer

architecture, as illustrated in Figure 3, where tissue and structure agents cooperate through shared

information including tissue intensity models, anatomical atlas, tissue and structure segmentations.

3. Hierarchical analysis using the EM algorithm

Hierarchical modelling is, in essence, based on the simple fact from probability that the joint distri-

bution of a collection of random variables can be decomposed into a series of conditional models. That

is, if Y, Z, θ are random variables, then we write the joint distribution in terms of a factorization such

as p(y, z, θ) = p(y|z, θ)p(z|θ)p(θ). The strength of hierarchical approaches is that they are based on the

specification of coherently linked system of conditional models. The key elements of such models can be

considered in three stages, the data stage, process stage and parameter stage. In each stage, complicated

dependence structure is mitigated by conditioning. For example, the data stage can incorporate measure-

ment errors as well as multiple datasets. The process and parameter stages can allow spatial interactions

as well as the direct inclusion of scientific knowledge. These modelling capabilities are especially relevant

to tackle the task of MRI brain scan segmentation. In image segmentation problems, the question of

interest is to recover an unknown image z ∈ Z, interpreted as a classification into a finite number K

of labels, from an image y of observed intensity values. This classification usually requires values for a

vector parameter θ ∈ Θ considered in a Bayesian setting as a random variable. The idea is to approach

the problem by breaking it into the three primary stages mentioned above. The first data stage is con-

cerned with the observational process or data model p(y|z, θ), which specifies the distribution of the data

y given the process of interest and relevant parameters. The second stage then describes the process

model p(z|θ), conditional on usually other parameters still denoted by θ for simplicity. Finally, the last

stage accounts for the uncertainty in the parameters through a distribution p(θ). In applications, each

of these stages may have multiple sub-stages. For example, if spatial interactions are to be taken into

account, it might be modelled as a product of several conditional distributions suggested by neighborhood
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relationships. Similar decompositions are possible in the parameter stage.

Ultimately, we are interested in the distribution of the process and parameters updated by the data,

that is the so-called posterior distribution p(z, θ | y). Due to generally too complex dependencies, it is

difficult to extract parameters θ from the observed data y without explicit knowledge of the unknown

true segmentation z. This problem is greatly simplified when the solution is determined within an

EM framework. The EM algorithm (McLachlan and Krishnan, 1996) is a general technique for finding

maximum likelihood solutions in the presence of missing data. It consists in two steps usually described

as the E-step in which the expectation of the so-called complete log-likelihood is computed and the M-

step in which this expectation is maximized over θ. An equivalent way to define EM is the following.

Let D be the set of all probability distributions on Z. As discussed in (Byrne and Gunawardana, 2005),

EM can be viewed as an alternating maximization procedure of a function F defined, for any probability

distribution q ∈ D, by

F (q, θ) =
∑
z∈Z

ln p(y, z | θ) q(z) + I[q], (1)

where I[q] = −Eq[log q(Z)] is the entropy of q (Eq denotes the expectation with regard to q and we use

capital letters to indicate random variables while their realizations are denoted with small letters). When

prior knowledge on the parameters is available, the Bayesian setting consists in replacing the maximum

likelihood estimation by a maximum a posteriori (MAP) estimation of θ using the prior knowledge

encoded in distribution p(θ). The maximum likelihood estimate of θ ie. θ̂ = arg maxθ∈Θ p(y|θ) is

replaced by θ̂ = arg maxθ∈Θ p(θ|y). The EM algorithm can also be used to maximize the posterior

distribution. Indeed, the likelihood p(y|θ) and F (q, θ) are linked through log p(y|θ) = F (q, θ) +KL(q, p)

where KL(q, p) is the Kullback-Leibler divergence between q and the conditional distribution p(z|y, θ)

and is non-negative,

KL(q, p) =
∑
z∈Z

q(z) log
(

q(z)
p(z|y, θ)

)
.

Using the equality log p(θ|y) = log p(y|θ) + log p(θ)− log p(y) it follows log p(θ|y) = F (q, θ) +KL(q, p) +

log p(θ) − log p(y) from which, we get a lower bound L(q, θ) on log p(θ|y) given by L(q, θ) = F (q, θ) +

log p(θ)−log p(y) .Maximizing this lower bound alternatively over q and θ leads to a sequence {q(r), θ(r)}r∈N

satisfying L(q(r+1), θ(r+1)) ≥ L(q(r), θ(r)). The maximization over q corresponds to the standard E-step

and leads to q(r)(z) = p(z|y, θ(r)). It follows that L(q(r), θ(r)) = log p(θ(r)|y) which means that the lower

bound reaches the objective function in θ(r) and that the sequence {θ(r)}r∈N increases p(θ|y) at each step.

It then appears that when considering our MAP problem, we replace (see eg. (Gelman et al., 2004)) the

function F (q, θ) by F (q, θ)+log p(θ). The corresponding alternating procedure is: starting from a current

value θ(r) ∈ Θ, set alternatively

q(r) = arg max
q∈D

F (q, θ(r)) = arg max
q∈D

∑
z∈Z

log p(z|y, θ(r)) q(z) + I[q], (2)
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and

θ(r+1) = arg max
θ∈Θ

F (q(r), θ) + log p(θ)

= arg max
θ∈Θ

∑
z∈Z

log p(y, z, θ) q(r)(z) + log p(θ)

= arg max
θ∈Θ

∑
z∈Z

log p(θ|y, z) q(r)(z) . (3)

The last equality in (2) comes from p(y, z|θ) = p(z|y, θ)p(y|θ) and the fact that p(y|θ) does not

depend on z. The last equality in (3) comes from p(y, z|θ) = p(θ|y, z) p(y, z)/p(θ) and the fact that

p(y, z) does not depend on θ. The optimization with respect to q gives rise to the same E-step as for the

standard EM algorithm, because q only appears in F (q, θ). It can be shown (eg. (Gelman et al., 2004)

p.319) that EM converges to a local mode of the posterior density except in some very special cases. This

EM framework appears as a reasonable framework for inference. In addition, it appears in (2) and (3)

that inference can be described in terms of the conditional models p(z|y, θ) and p(θ|y, z). In the following

section, we show how to define our joint model so as to take advantage of these considerations.

4. A Bayesian model for robust joint tissue and structure segmentations

In this section, we describes the Bayesian framework that enables us to model the relationships

between the unknown linked tissue and structure labels, the observed MR image data and the tissue

intensity distributions parameters.

We consider a finite set V of N voxels on a regular 3D grid. We denote by y = {y1, . . . , yN} the

intensity values observed respectively at each voxel and by t = {t1, . . . , tN} the hidden tissue classes.

The ti’s take their values in {e1, e2, e3} where ek is a 3-dimensional binary vector whose kth component

is 1, all other components being 0. In addition, we consider L subcortical structures and denote by

s = {s1, . . . , sN} the hidden structure classes at each voxel. Similarly, the si’s take their values in

{e′1, . . . , e′L, e′L+1} where e′L+1 corresponds to an additional background class. As parameters θ, we

consider the parameters describing the intensity distributions for the K = 3 tissue classes. They are

denoted by θ = {θki , i ∈ V, k = 1 . . .K}. We write for all k = 1 . . .K, θk = {θki , i ∈ V } and for all i ∈ V ,

θi = t(θki , k = 1 . . .K) (t means transpose). Note that we describe here the most general setting in which

the intensity distributions can depend on voxel i and vary with its location. Standard approaches usually

consider that intensity distributions are Gaussian distributions for which the parameters depend only on

the tissue class. Although the Bayesian approach makes the general case possible, in practice we consider

θki ’s equal for all voxels i in some prescribed regions. More specifically, our local approach consists in
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dividing the volume V into a partition of subvolumes and consider the θki constant over each subvolume

(see Section 4.2).

To explicitly take into account the fact that tissue and structure classes are related, a generative

approach would be to define a complete probabilistic model, namely p(y, t, s, θ). To define such a joint

probability is equivalent to define the two probability distributions p(y) and p(t, s, θ|y). However, in this

work, we rather adopt a discriminative approach in which a conditional model p(t, s, θ|y) is constructed

from the observations and labels but the marginal p(y) is not modelled explicitly. In a segmentation

context, the full generative model is not particularly relevant to the task of inferring the class labels. This

appears clearly in equations (2) and (3) where the relevant distributions are conditional. In addition, it

has been observed that conditional approaches tend to be more robust than generative models (Lafferty

et al., 2001; Minka, 2005). Therefore, we focus on p(t, s, θ|y) as the quantity of interest. It is fully

specified when the two conditional distributions p(t, s|y, θ) and p(θ|y, t, s) are defined. The following

subsections 4.1 and 4.2 specify respectively these two distributions.

4.1. A conditional model for tissues and structures

The distribution p(t, s|y, θ) can be in turn specified by defining p(t|s,y, θ) and p(s|t,y, θ). The

advantage of the later conditional models is that they can capture in an explicit way the effect of tissue

segmentation on structure segmentation and vice versa. Note that on a computational point of view

there is no need at this stage to describe explicitly the joint model that can be quite complex. In what

follows, notation txx′ denotes the scalar product between two vectors x and x′. Notation UTij (ti, tj ; ηT )

and USij(si, sj ; ηS) denotes pairwise potential functions with interaction parameters ηT and ηS . Simple

examples for UTij (ti, tj ; ηT ) and USij(si, sj ; ηS) are provided by adopting a Potts model which corresponds

to

UTij (ti, tj ; ηT ) = ηT
ttitj and USij(si, sj ; ηS) = ηS

tsisj .

Such a model captures, within each label set t and s, interactions between neighboring voxels. It implies

spatial interaction within each label set.

Structure conditional Tissue model. We define p(t|s,y, θ) as a Markov Random Field in t with the

following energy function,

HT |S,Y,Θ(t|s,y, θ) =
∑
i∈V

ttiγi(si) +
∑

j∈N (i)

UTij (ti, tj ; ηT ) + log gT (yi; tθiti)

, (4)

where N (i) denotes the voxels neighboring i, gT (yi; tθiti) is the Gaussian distribution with parameters θki

if ti = ek and the external field γi depends on si and is defined by γi(si) = eT si if si ∈ {e′1, . . . , e′L} and
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γi(si) = 0 otherwise, with T si denoting the tissue of structure si and 0 the 3-dimensional null vector.

The rationale for choosing such an external field, is that depending on the structure present at voxel i

and given by the value of si, the tissue corresponding to this structure is more likely at voxel i while the

two others tissues are penalized by a smaller contribution to the energy through a smaller external field

value. When i is a background voxel, the external field does not favor a particular tissue. The Gaussian

parameters θki = {µki , λki } are respectively the mean and precision which is the inverse of the variance.

We use similar notation such as µ = {µki , i ∈ V, k = 1 . . .K} and µk = {µki , i ∈ V }, etc.

Tissue conditional structure model. A priori knowledge on structures is incorporated through a

field f = {fi, i ∈ V } where fi = t(fi(e′l), l = 1 . . . L+ 1) and fi(e′l) represents some prior probability that

voxel i belongs to structure l , as provided by a registered probabilistic atlas. We then define p(s|t,y, θ)

as a Markov Random Field in s with the following energy function,

HS|T,Y,Θ(s|t,y, θ) =
∑
i∈V

tsi log fi +
∑

j∈N (i)

USij(si, sj ; ηS) + log gS(yi|ti, si, θi)

 (5)

where gS(yi|ti, si, θi) is defined as follows,

gS(yi|ti, si, θ) = [gT (yi; tθieT si ) fi(si)]w(si) [gT (yi; tθiti) fi(e′L+1)](1−w(si)) (6)

where w(si) is a weight dealing with the possible conflict between values of ti and si. For simplicity we

set w(si) = 0 if si = e′L+1 and w(si) = 1 otherwise but considering more general weights could be an

interesting refinement. Other parameters in (4) and (5) include interaction parameters ηT and ηS which

are considered here as hyperparameters to be specified (see Section 6).

4.2. A conditional model for intensity distribution parameters

To ensure spatial consistency between the parameter values, we define also p(θ|y, t, s) as a MRF. In

practice however, in our general setting which allows different values θi at each i, there are too many

parameters and estimating them accurately is not possible. As regards estimation then, we adopt a local

approach as in Scherrer et al. (2009c). The idea is to consider the parameters as constant over subvolumes

of the entire volume. Let C be a regular cubic partionning of the volume V in a number of non-overlapping

subvolumes {Vc, c ∈ C}. We assume that for all c ∈ C and all i ∈ Vc, θi = θc and consider a pairwise

MRF on C with energy function denoted by HCΘ(θ) where by extension θ denotes the set of distinct values

θ = {θc, c ∈ C}. Outside the issue of estimating θ in the M-step, having parameters θi’s depending on i

is not a problem. For the E-steps, we go back to this general setting using an interpolation step specified

in Section 5.2. It follows that p(θ|y, t, s) is defined as a MRF with the following energy function,

HΘ|Y,T,S(θ|y, t, s) = HCΘ(θ) +
∑
c∈C

log
∏
i∈Vc

gS(yi|ti, si, θc),
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where gS(yi|ti, si, θc) is the expression in (6). The specific form of the Markov prior on θ is specified in

Section 5.

5. Estimation by Generalized Alternating Minimization

The particularity of our segmentation task is to include two label sets of interest, t and s which are

linked and that we would like to estimate cooperatively using one to gain information on the other. We

denote respectively by T and S the spaces in which t and s take their values. Denoting z = (t, s), we

apply the EM framework introduced in Section 3 to find a MAP estimate θ̂ of θ using the procedure given

by (2) and (3) and then generate t and s that maximize the conditional distribution p(t, s|y, θ̂). Note

that this is however not equivalent to maximizing over t, s and θ the posterior distribution p(t, s, θ|y).

Indeed p(t, s, θ | y) = p(t, s|y, θ) p(θ|y) and in the EM setting, θ is found by maximizing the second

factor only.

However, solving the optimization (2) over the set D of probability distributions q(T,S) on T × S

leads for the optimal q(r)
(T,S) to p(t, s|y, θ(r)) which is intractable for the joint model defined in Section

4. We therefore propose an EM variant appropriate to our cooperative context and in which the E-step

is not performed exactly. The optimization (2) is solved instead over a restricted class of probability

distributions D̃ which is chosen as the set of distributions that factorize as q(T,S)(t, s) = qT (t) qS(s)

where qT (resp. qS) belongs to the set DT (resp. DS) of probability distributions on T (resp. on S). This

variant is usually referred to as Variational EM (Jordan et al., 1999). It follows that the E-step becomes

an approximate E-step,

(q(r)
T , q

(r)
S ) = arg max

(qT ,qS)
F (qT qS , θ(r)) .

This step can be further generalized by decomposing it into two stages. At iteration r, with current

estimates denoted by q(r−1)
T , q

(r−1)
S and θ(r), we consider the following updating,

E-T-step: q(r)
T = arg max

qT∈DT

F (qT q
(r−1)
S , θ(r))

E-S-step: q(r)
S = arg max

qS∈DS

F (q(r)
T qS , θ

(r)).

The effect of these iterations is to generate sequences of paired distributions and parameters {q(r)
T , q

(r)
S , θ(r)}r∈N

that satisfy F (q(r+1)
T q

(r+1)
S , θ(r+1)) ≥ F (q(r)

T q
(r)
S , θ(r)). This variant falls in the modified Generalized Al-

ternating Minimization (GAM) procedures family for which convergence results are available (Byrne and

Gunawardana, 2005).
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We then derive two equivalent expressions of F when q factorizes as in D̃. Expression (1) of F can

be rewritten as F (q, θ) = Eq[log p(T|S,y, θ)] + Eq[log p(S,y|θ)] + I[q]. Then,

F (qT qS , θ) = EqT
[EqS

[log p(T|S,y, θ)]] + EqS
[log p(S,y|θ)] + I[qT qS ]

= EqT
[EqS

[log p(T|S,y, θ)]] + I[qT ] +G[qS ] ,

where G[qS ] = EqS
[log p(S,y|θ)]+I[qS ] is an expression that does not depend on qT . Using the symmetry

in T and S, it is easy to show that similarly,

F (qT qS , θ) = EqS
[EqT

[log p(S|T,y, θ)]] + EqT
[log p(T,y|θ)] + I[qT qS ]

= EqS
[EqT

[log p(S|T,y, θ)]] + I[qS ] +G′[qT ] ,

where G′[qT ] = EqT
[log p(T,y|θ)] + I[qT ] is an expression that does not depend on qS . It follows that

the E-T and E-S steps reduce to,

E-T-step: q(r)
T = arg max

qT∈DT

EqT
[E
q
(r−1)
S

[log p(T|S,y, θ(r))]] + I[qT ] (7)

E-S-step: q(r)
S = arg max

qS∈DS

EqS
[E
q
(r)
T

[log p(S|T,y, θ(r))]] + I[qS ] (8)

and the M-step

θ(r+1) = arg max
θ∈Θ

E
q
(r)
T q

(r)
S

[log p(θ|y,T,S)] . (9)

More generally, we adopt in addition, an incremental EM approach (Byrne and Gunawardana, 2005)

which allows re-estimation of the parameters (here θ) to be performed based only on a sub-part of the

hidden variables. This means that we incorporate an M-step (9) in between the updating of qT and qS .

Similarly, hyperparameters could be updated there too.

It appears in equations (7), (8) and (9) that for inference the specification of the three conditional

distributions p(t|s,y, θ), p(s|t,y, θ) and p(θ|t, s,y) is necessary and sufficient.

5.1. Structure and tissue conditional E-steps

Then, steps E-T and E-S have to be further specified by computing the expectations with regards to

q
(r−1)
S and q

(r)
T . Using the structure conditional model definition (4), it comes,

E
q
(r−1)
S

[log p(T|S,y, θ(r))] = −E
q
(r−1)
S

[logWT ]

+
∑
i∈V

tTiEq(r−1)
S

[γi(Si)] +
∑

j∈N (i)

UTij (Ti, Tj ; ηT ) + log gT (yi; tθ
(r)
i Ti) ,

where WT is a normalizing constant that does not depend on T and can be omitted in the maximization

of step E-T. The external field term leads to
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E
q
(r−1)
S

[γi(Si)] =
L∑
l=1

eT l q
(r−1)
Si

(e′l)

= t(
∑

l st.T l=1

q
(r−1)
Si

(e′l),
∑

l st.T l=2

q
(r−1)
Si

(e′l),
∑

l st.T l=3

q
(r−1)
Si

(e′l)) .

The kth (k = 1 . . . 3) component of the above vector represents the probability that voxel i belongs to

a structure whose tissue class is k. The stronger this probability the more a priori favored is tissue k.

Eventually, we notice that step E-T is equivalent to the E-step one would get when applying EM to a

standard Hidden MRF over t with Gaussian class distributions and an external field parameter fixed to

values based on the current structure segmentation. To solve this step, then, various inference techniques

for Hidden MRF’s can be applied. In this paper, we adopt Mean field like algorithms (Celeux et al., 2003)

used in (Scherrer et al., 2009c) for MRI brain scans. This class of algorithms has the advantage to turn the

initial intractable model into a model equivalent to a system of independent variables for which the exact

EM can be carried out. Following a mean field principle, when spatial interactions are defined via Potts

models, these algorithms are based on the approximation of UTij (ti, tj ; ηT ) by ŨTij (ti, tj ; ηT ) = ηT
ttit̃j

where t̃ is a particular configuration of T which is updated at each iteration according to a specific

scheme. We refer to Celeux et al. (2003) for details on three possible schemes to update t̃.

Similarly, using definitions (5) and (6),

E
q
(r)
T

[log p(S|T,y, θ(r))] = −E
q
(r)
T

[logWS ]

+
∑
i∈V

tSifi +
∑

j∈N (i)

USij(Si, Sj ; ηS) + E
q
(r)
T

[log gS(yi|Ti, Si, θ(r)
i ]

where the normalizing constant WS does not depend on S and can be omitted in the maximization in

step E-S. The last term can be further computed,

E
q
(r)
T

[log gS(yi|Ti, Si, θ(r)
i )] = log g′S(yi|Si, θ(r)

i ),

where

g′S(yi|si, θi) = [gT (yi; tθieT si ) fi(si)]w(si) [(
3∏
k=1

gT (yi; θki )q
(r)
Ti

(ek))fi(e′L+1)](1−w(si)) .

In this later expression, the product corresponds to a Gaussian distribution with mean
3∑
k=1

µki λ
k
i q

(r)
Ti

(ek)/
3∑
k=1

λki q
(r)
Ti

(ek)

and precision
3∑
k=1

λki q
(r)
Ti

(ek).

It follows that step E-S can be seen as the E-step for a standard Hidden MRF with class distributions

defined by g′S and an external field incorporating prior structure knowledge through f . As already

mentioned, it can be solved using techniques such as those described in Celeux et al. (2003).
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5.2. Updating the tissue intensity distribution parameters

As mentioned in Section 4.2, we now consider that the θi’s are constant over subvolumes of a given

partition of the entire volume. The MRF prior on θ = {θc, c ∈ C} is p(θ) ∝ exp(HCΘ(θ)) and (9) can be

written as,

θ(r+1) = arg max
θ∈Θ

p(θ)
∏
i∈V

K∏
k=1

gT (yi; θki )aik = arg max
θ∈Θ

p(θ)
∏
c∈C

K∏
k=1

∏
i∈Vc

gT (yi; θkc )aik ,

where aik = q
(r)
Ti

(ek)q(r)
Si

(e′L+1) +
∑
l st.T l=ek

q
(r)
Si

(el). The second term in aik is the probability that

voxel i belongs to one of the structures made of tissue k. The aik’s sum to one (over k) and aik can be

interpreted as the probability for voxel i to belong to the tissue class k when both tissue and structure

segmentations information are combined. Using the additional natural assumption that p(θ) =
K∏
k=1

p(θk),

it is equivalent to solve for each k = 1 . . .K,

θk (r+1) = arg max
θk∈Θk

p(θk)
∏
c∈C

∏
i∈Vc

gT (yi; θkc )aik . (10)

However, when p(θk) is chosen as a Markov field, the exact maximization (10) is still intractable. We

therefore replace p(θk) by a product form given by its modal-field approximation (Celeux et al., 2003).

This is actually equivalent to use the ICM (Besag, 1986) algorithm. Assuming a current estimation θk (ν)

of θk at iteration ν, we consider in turn,

∀c ∈ C, θk (ν+1)
c = arg max

θk
c∈Θk

p(θkc | θ
k (ν)
N (c))

∏
i∈Vc

gT (yi; θkc )aik , (11)

where N (c) denotes the indices of the subvolumes that are neighbors of subvolume c and θkN (c) = {θkc′ , c′ ∈

N (c)}. At convergence, the obtained values give the updated estimation θk (r+1).

The particular form (11) above guides the specification of the prior for θ. Indeed, Bayesian analysis

indicates that a natural choice for p(θkc | θkN (c)) has to be among conjugate or semi-conjugate priors for

the Gaussian distribution gT (yi; θkc ). We choose to consider here the latter case. In addition, we assume

that the Markovian dependence applies only to the mean parameters and consider that p(θkc | θkN (c)) =

p(µkc | µkN (c)) p(λ
k
c ) , with p(µkc | µkN (c)) set to a Gaussian distribution with mean mk

c +
∑
c′∈N (c) η

k
cc′(µ

k
c′−

mk
c′) and precision λ0k

c , and p(λkc ) set to a Gamma distribution with shape parameter αkc and scale

parameter bkc . The quantities {mk
c , λ

0k
c , α

k
c , b

k
c , c ∈ C} and {ηkcc′ , c′ ∈ N (c)} are hyperparameters to be

specified. For this choice, we get valid joint Markov models for the µk’s (and therefore for the θk’s) which

are known as auto-normal (Besag, 1974) models. Whereas for the standard Normal-Gamma conjugate

prior the resulting conditional densities fail in defining a proper joint model and caution must be exercised.
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Standard Bayesian computations lead to a decomposition of (11) into two maximizations: for µck, the

product in (11) has a Gaussian form and the mode is given by its mean. For λck, the product turns into

a Gamma distribution and its mode is given by the ratio of its shape parameter over its scale parameter.

After some straightforward algebra, we get the following updating formulas:

µ(ν+1) k
c =

λ
(ν) k
c

∑
i∈Vc

aikyi + λ0k
c (mk

c +
∑
c′∈N (c) η

k
cc′(µ

(ν) k

c′ −mk
c′))

λ
(ν) k
c

∑
i∈Vc

aik + λ0k
c

(12)

and λ(ν+1) k
c =

αkc +
∑
i∈Vc

aik/2− 1

bkc + 1/2[
∑
i∈Vc

aik(yi − µ(ν+1) k
c )2]

(13)

In these equations, quantities similar to the ones computed in standard EM for the mean and variance

parameters appear weighted with other terms due to neighbors information. Namely, standard EM on

voxels of Vc would estimate µkc as
∑
i∈Vc

aikyi/
∑
i∈Vc

aik and λkc as
∑
i∈Vc

aik/
∑
i∈Vc

aik(yi − µkc )2. In

that sense formulas (12) and (13) intrinsically encode cooperation between local models.

From these parameters values constant over subvolumes we compute parameter values per voxel by

using cubic splines interpolation between θc and θc′ for all c′ ∈ N (c). We go back this way to our general

setting which has the advantage to ensure smooth variation between neighboring subvolumes and to

intrinsically handle nonuniformity of intensity inside each subvolume.

The key-point emphasized by these last derivations of our E and M steps is that it is possible to go

from a joint cooperative model to an alternating procedure in which each step reduces to an intuitive well

identified task. The goal of the above developments was to propose a well based strategy to reach such

derivations. When cooperation exists, intuition is that it should be possible to specify stages where each

variable of interest is considered in turn but in a way that uses the other variables current information.

Interpretation is easier because in each such stage the central part is played by one of the variable at a

time. Inference is facilitated because each step can be recast into a well identified (Hidden MRF) setting

for which a number of estimation techniques are available.

6. Results

We choose not to estimate the parameters ηT and ηS but fixed them to the inverse of a decreasing

temperature as proposed in Besag (1986). In expressions (12) and (13), we considered a general case but

it is natural and common to simplify the derivations by setting the mk
c ’s to zero and ηkcc′ to |N (c)|−1

where |N (c)| is the number of subvolumes in N (c). This means that the distribution p(µkc |µkN (c)) is

a Gaussian centered at
∑
c′∈N (c) µ

k
c′/|N (c)| and therefore that all neighbors c′ of c act with the same

weight. The precision parameters λ0k
c is set to Ncλkg where λkg is a rough precision estimation for class

k obtained for instance using some standard EM algorithm run globally on the entire volume and Nc is
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the number of voxels in c that accounts for the effect of the sample size on precisions. The αkc ’s were set

to |N (c)| and bkc to |N (c)|/λkg so that the mean of the corresponding Gamma distribution is λkg and the

shape parameter αkc somewhat accounts for the contribution of the |N (c)| neighbors. Then, the size of

subvolumes is set to 20× 20× 20 voxels. The subvolume size is a mildly sensitive parameter. In practice,

subvolume sizes from 20× 20× 20 to 30× 30× 30 give similar good results on high resolution images (1

mm3). On low resolution images, a size of 25× 25× 25 may be preferred.

Evaluation was then performed following the two main aspects of our model. The first aspect is the

partionning of the global clustering task into a set of local clustering tasks using local MRF models. The

advantage of our approach is that, in addition, a way to ensure consistency between all these local models

is dictated by the model itself. The second aspect is the cooperative setting which is relevant when two

global clustering tasks are considered simultaneously. It follows that we first assessed the performance

of our model considering the local aspect only. We compared (Section 6.1) the results obtained with our

method, restricted to tissue segmentation only, with other recent or state-of-the-art methods for tissue

segmentation. We then illustrate more of the modelling ability of our approach by showing results for

the joint tissue and structure segmentation (Section 6.2). As in Ashburner and Friston (2005); Shattuck

et al. (2001b); Van Leemput et al. (1999), for a quantitative evaluation, we used the Dice similarity metric

(Dice, 1945) measuring the overlap between a segmentation result and the gold standard.

6.1. A local method for segmenting tissues

We first carried out tissue segmentation only (FBM-T) and compare the results with LOCUS-T

(Scherrer et al., 2009c), FAST (Zhang et al., 2001) from FSL and SPM5 (Ashburner and Friston, 2005)

on both BrainWeb (Collins et al., 1998) phantoms (Table 1) and real 3T brain scans (Figure 4). Our

method shows very satisfying robustness to noise and intensity nonuniformity. On BrainWeb images,

it is better than SPM5 and comparable to LOCUS-T and FAST, for a low computational time. The

mean Dice metric over all eight experiments and for all tissues is 86% for SPM5, 88% for FAST and 89%

for LOCUS-T and FBM-T. The mean computation times for the full 3-D segmentation were 4min for

LOCUS-T and FBM-T, 8min for FAST and more than 10min for SPM5. On real 3T scans, LOCUS-T

and SPM5 also give in general satisfying results.
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6.2. Joint tissue and structure segmentation

We then evaluated the performance of the joint tissue and structure segmentation (FBM-TS). We

introduced a priori knowledge based on the Harvard-Oxford subcortical probabilistic atlas1. Figures

5 and 6 show an evaluation on real 3T brain scans, using FLIRT (Jenkinson and Smith, 2001)2 to

affine-register the atlas. In Figures 5 and 6, the gain obtained with tissue and structure cooperation is

particularly clear for the putamens and thalamus.

We also computed via STAPLE (Warfield et al., 2004) a structure gold standard using three manual

expert segmentations of BrainWeb images. We considered the left caudate, left putamen and left thalamus

which are of special interest in various neuroanatomical studies and conpared the results with LOCUS-

TS (Scherrer et al., 2009c) and FreeSurfer (see Table ??). FBM-TS lower results for the caudate were

due to a bad registration of the atlas in this region. For the putamen and thalamus the improvement is

respectively of 14.7% and 20.3%. Due to high computational times,only the 5% noise, 40% nonuniformity

image was considered with Freesurfer. For this image, results obtained for FBM-TS were respectively

74%, 84%, 91% for caudate, putamen and thalamus. We then considered 18 images from the IBSR v2

database. The mean Dice metric for the 9 right structures (17 were segmented) is reported in Figure 7.

7. Discussion

The results obtained with our approach are very satisfying and compare favorably with other existing

methods. The strength of our fully Bayesian joint model is to be based on the specification of a coherently

linked system of conditional models for which we make full use of modern statistics to ensure tractability.

The tissue and structure models are linked conditional MRF’s that capture several level of interactions.

They incorporate 1) spatial dependencies between voxels for robustness to noise, 2) relationships between

tissue and structure labels for cooperative aspects and 3) a priori anatomical information via the MRF

external field parameters for consistency with expert knowledge. Besides, the addition of a conditional

MRF model on the intensity distribution parameters allow to handle local estimations for robustness to

nonuniformities. In this setting, the whole consistent treatment of MR brain scans is made possible using

the framework of Generalized Alternating Minimization (GAM) procedures that generalize the standard

EM framework. Another advantage of this approach is that it is made of steps that are easy to interpret

and could be enriched with additional information. In particular, results currently highly depend on

the atlas registration step which could be introduced in our framework as in Pohl et al. (2006). A step

1http://www.fmrib.ox.ac.uk/fsl/
2http://www.fmrib.ox.ac.uk/fsl/flirt/
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in this direction is proposed in Scherrer et al. (2009b). Also a different kind of prior knowledge could

be considered such as the fuzzy spatial relations used in Scherrer et al. (2009c). Other on going work

relates to the interpolation step we added to increase robustness to nonuniformities at a voxel level.

We believe this stage could be generalized and incorporated in the model by considering successively

various degrees of locality, mimicking a multi resolution approach and refining from coarse partitions of

the entire volume to finer ones. Also considering more general weights w, to deal with possible conflicts

between tissue and structure labels, is possible in our framework and would be an interesting refinement.

Eventually, our choice of prior for the intensity distribution parameters was guided by the need to define

appropriate conditional specifications p(θkc |θ
k(ν)
N (c)) in (11) that lead to a valid Markov model for the θk’s.

Nevertheless, incompatible conditional specifications can still be used for inference, eg. in a Gibbs sampler

or ICM algorithm with some valid justification (see Heckerman et al. (2000) or the discussion in Arnold

et al. (2001)). In applications, one may found that having a joint distribution is less important than

incorporating information from other variables such as typical interactions. In that sense, conditional

modelling allows enormous flexibility in dealing with practical problems. However, it is not clear when

incompatibility of conditional distributions is an issue in practice and the theoretical properties of the

procedures in this case are largely unknown and should be investigated.

In terms of algorithmic efficiency, our agent-based approach enables us to by-pass computationally

intensive implementations usually inherent to MRF models. It results very competitive computational

times unusual for such structured models.
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Table 1: FBM-T. Mean Dice metric and mean computational time (M.C.T) values on BrainWeb over 8 experiments for

different values of noise (3%, 5%, 7%, 9%) and nonuniformity (20%, 40% ).
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Table 2: FBM-TS. Mean Dice metric and mean computational time (M.C.T) values on BrainWeb over 8 experiments for

different values of noise (3%, 5%, 7%, 9%) and nonuniformity (20%, 40% ). Note that for Freesurfer only 5% noise and 40%

nonuniformity was considered.
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Figure 1: Symbolic multi-level design of our approach.
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Figure 2: Graphical model illustrating the joint dependencies between local intensity models, and tissue and structure

segmentations.
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Figure 3: Implementation using a two agent-layer architecture and a shared space for communication.
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Figure 4: FBM-T. Segmentations respectively by FBM-T (b), LOCUS-T (c), SPM5 (d) and FAST (e) of a highly nonuniform

real 3T image (a).
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Figure 5: Evaluation of FBM-TS on a real 3T brain scan (a). For comparison the tissue segmentation obtained with FBM-T

is shown in (b). Images (c) and (d): structure segmentation by FBM-TS and corresponding improved tissue segmentation.

Image (e): 3-D reconstruction of the 17 segmented structures: the two lateral ventricules, caudates, accumbens, putamens,

thalamus, pallidums, hippocampus, amygdalas and the brain stem. The computational time was < 15min after the

registration step.
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Figure 6: Evaluation of FBM-TS on a real 3T brain scan (a). For comparison the tissue segmentation obtained with

FBM-T is shown in (b). The tissue segmentation obtained with FBM-TS is given in (c). Major differences between tissue

segmentations (images (b) and (c)) are pointed out using arrows. Image (d) shows the structure segmentation with FBM-TS.
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Figure 7: Evaluation of FBM-TS on IBSR v2 (9 right structures) and comparison with Ciofolo and Barillot (2006). Y axis

= Mean Dice metric
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