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ABSTRACT

Multi-tensor models provide information about the fiber bun-
dles underlying characteristics and are of great interest for
clinical applications. In this work we propose both a novel
model fitting procedure and a novel acquisition scheme for
multi-tensor assessment. Our fitting procedure includes the
estimation of the diffusion of free water and ensures non-
degenerate and regularized tensors. Our acquisition scheme
combines spherical and cubic sampling. It enables the acqui-
sition of multiple non-zero b-values which has been shown to
be required for the full multi-tensor estimation. It enables high
b-values to be acquired while achieving the same low echo
time as a single-shell HARDI, leading to comparable geomet-
rical and intensity distortion. We evaluate our resulting novel
strategy CUSP-MFM (CUbe+SPhere Multi-Fiber Model) on
both synthetic and clinical data. We show the ability of CUSP-
MFM of assessing complex fiber structures from short dura-
tion acquisitions, compatible with clinical routine.

Index Terms— diffusion imaging, multi-tensor fitting,
multiple b-values acquisition scheme.

1. INTRODUCTION

A large number of approaches have been proposed to over-
come the limitations of Diffusion Tensor Imaging (DTI) [1]
which cannot represent complex fiber structures. They involve
both novel diffusion signal sampling schemes and novel ways
to analyse the diffusion signal. Three major sampling schemes
have been proposed for complex structure assessment: carte-
sian sampling, single-shell and multiple-shell spherical sam-
pling (high angular resolution diffusion imaging, HARDI).
Various model-free and model-based approaches have been
investigated to analyse the diffusion-weighted (DW) signal.
Most of them focus on describing the general shape of the
diffusion profile in each voxel: diffusion spectrum imaging
(DSI), Q-ball imaging (QBI), Exact QBI (EQBI), spherical
deconvolution (SD), generalized diffusion tensor imaging
(GDTI), diffusion orientation transform (DOT), etc. The ma-
jor drawback to these approaches is that they do not consider
each fiber independently. They provide information about the
major fiber directions but are limited to connectivity assess-
ment.

In contrast, multi-fiber models consider a mixture of inde-
pendent fibers in each voxel. They provide information about
individual fiber bundles underlying characteristics and about
the fibers mixing proportions in addition to the fibers orien-
tation. Multi-tensor approaches [2] are an attractive model.
Since an individual fiber is well represented by a single ten-
sor, voxels consisting of multiple fibers are expected to be
well represented by a mixture of tensors. This modeling en-
ables the computation of diffusion parameters for each fiber
independently which is of central interest for fiber integrity
assessment. Until recently multi-tensor models were however
known to be numerically challenging and unstable, limiting
their practical application. In [3] it was theoretically demon-
strated that the reason lies in a collinearity of the parameters:
only the tensor orientation can be estimated when using a sin-
gle non-zero b-value. Multiple non-zero b-values are required
to estimate the full multi-tensor model and determine simulta-
neously the tensors direction, the tensors size and the fraction
of occupancy.

In this work we propose a novel two-tensor fitting al-
gorithm combined with a novel acquisition scheme which
has not been used before for complex fiber structure assess-
ment. Our fitting procedure is formulated in a variational
log-Euclidean framework. It ensures non-degenerate ten-
sors and incorporates a novel regularization scheme. Our
acquisition scheme combines a single-shell HARDI with the
gradients lying on the enclosing cube. It enables the ac-
quisition of multiple non-zero b-values without increasing
the minimum achievable echo time (TE) for the single-shell
HARDI. In consequence, and contrary to multi-shell HARDI,
it does not increase the acquisition time nor the geometric dis-
tortion. We evaluate our resulting novel strategy CUSP-MFM
(CUsbe+SPhere Multi-Fiber Model) via various experiments
with both synthetic and real data experiments with short dura-
tion acquisitions. We report qualitative and quantitative fitting
performances as well as tractography results. It shows the
ability of CUSP-MFM of assessing complex fiber structures
with clinically compatible acquisition time.



2. MATERIAL AND METHODS.

2.1. A variational log-Euclidean two-tensor fitting proce-
dure.

We consider each voxel to be composed of three compart-
ments: two anisotropic compartments representing two fibers
and one isotropic compartment modeling the diffusion of free
water. The DW signal Sk along a gradient direction gk is then
modeled as the following Gaussian mixture [2]:

Sk(D, f) = S0(f0e
−bkDiso + f1e

−bkg
T
k D1gk + f2e

−bkg
T
k D2gk ) ,

where Diso is the diffusivity of free water, bk is the applied
b-value for the gradient direction k, D = (D1,D2) are two
tensors representing two fibers and f = (f0, f1, f2) are the
fractions of occupancy of each compartment (

∑2
j=0 fj = 1).

To ensure the symmetric definite positive property of each
tensor we parameterize them in the log-Euclidean framework
by setting L = (L1,L2) = (log(D1), log(D2)). The simul-
taneous estimation and regularization of f and L (and conse-
quently D) is performed via a variational formulation. We
consider the image domain Ω to be a regular 3-dimensional
(3D) grid and minimize the following energy:(

L̂, f̂
)
= argmin

L,f

∫
x∈Ω

Udata(L, f ,x) + αUreg(L, f ,x) dx ,

The data-attachment term Udata is given by a classical least-
square criteria:

Udata(L, f ,x) =

Ng∑
k=1

[
Sk

(
eL(x), f(x)

)
− yk(x)

]2
, (1)

where yk is the measured image for the gradient direction k
and Ng is the number of gradients directions. The term Ureg

enables us to regularize the tensors estimation with a model
that exploits spatial homogeneity. We consider an anisotropic
regularization model to preserve sharp contours and separate
the regularization for each tensor. We consider the widely
used minimization of φ-functionals of the spatial gradient’s
norm ||∇Lj(x)|| and minimize the following energy:

Ureg(L, f ,x) =

2∑
j=1

∫
x∈Ω

φ(||∇Lj(x)||)dx ,

with φ(s) =
√

1 + s2/K2 which accounts for anisotropic
regularization, K being a normalization factor for the gra-
dient. Following the one-tensor log-Euclidean model of [4]
we set ||∇Lj(x)||2 =

∑3
m=1 ||∂j,mL(x)||2LE with || · ||LE

the log-Euclidean metric. The partial derivatives ∂j,mL(x)
are approximated with a finite difference scheme. We take
into account a special property of multi-fiber models by re-
lating neighboring tensors which are part of the same fiber
tract. This is achieved by considering the two most similar
neighbors Lq(x ± xm) to Lj(x) when computing the finite
difference in a direction xm (m ∈ {1, 2, 3}):

∂j,mL(x) ≈
(
argmin

Lq

||Lq(x+ xm)− Lj(x)||LE − 2Lj(x)

+ argmin
Lq

||Lq(x− xm)− Lj(x)||LE

)
/(2||xm||)

We parameterize each tensor by its eigenvalues Λj =
diag(λj1, λj2, λj3) (λj1 ≥ λj2 ≥ λj3) and the Euler angles
(θj , ψj , φj). This representation enables efficient optimiza-
tion of the parameters, as well as enabling the choice of intro-
ducing further constraints on the estimated tensors: symmetry
of the eigenvalues, cylindrical shape of each tensor, bounds
on the magnitude of the eigenvalues, equiplanar tensors, etc.

The MFM parameters are estimated by performing an it-
erative minimization which requires an initial guess. We con-
sider the one-tensor solution D1T and initialize expL

(0)
1 and

expL
(0)
2 according to a rotation of D1T of angle ϕ = ±λ

1T
2

λ1T
1

π
4

in the plane formed by (λ1T1 , λ1T2 ) the two largest eigen values
of D1T. When λ1T1 >> λ1T2 , which likely indicates an indi-
vidual fiber bundle in that voxel, we have ϕ ≈ 0 and the initial
Dj’s are two tensors with almost parallel principal diffusivi-
ties. In contrast, when λ1T1 = λ1T2 , the initial Dj’s describe
two tensors whose principal diffusivities are perpendicular.

The minimization is performed using the BOBYQA algo-
rithm [5], a well-established iterative derivative-free bound-
constrained optimization technique using quadratic approxi-
mations for the objective function at each iteration. It con-
verges quickly and enables the introduction of constraints
such as fj ∈ [0, 1]. We found BOBYQA to be less sensitive
to local minima than a conjugate gradient descent scheme.

2.2. The CUSP gradient encoding scheme.

As theoretically demonstrated in [3] multiple non-zero b-
values are required to fully estimate two-tensor models. Us-
ing separate single-shell HARDI at different b-values leads
to different TE for each shell. It leads to different geomet-
ric distortion patterns and is subject to spatial misregistration
caused by patient motions between scans. Multi-shell HARDI
as used in [3] combines several shells in a unique encoding
scheme. It however imposes to use the minimum TE achiev-
able for the largest b-value, which is suboptimal for the low
b-value measurements. The larger TE also leads to signifi-
cantly increased geometric and intensity distortions.

We propose to employ one single-shell HARDI com-
bined with the hexa- and tetrahedral gradients which lie on
the edges and the corners of the enclosing cube. The six
hexahedral gradients {(1, 1, 0), (0, 1, 1), ...} are

√
2-norm

gradients and double the nominal b-value1. The four tetra-
hedral {(1, 1, 1), (−1, 1, 1), ...} are

√
3-norm gradients and

provide b-values three times larger the nominal b-value. Fur-
ther b-values can be acquired by selecting gradient directions
which have a squared norm ranging between 0 and 3. To
our knowledge, this is the first report of utilizing this type of
acquisition to enable the estimation of a multiple fiber model.
Employing such an encoding scheme enables the acquisition
of multiple high b-values while using the same TE than a reg-
ular single-shell HARDI. It enables the full two-tensor model

1The applied b-value bk is related to the nominal b-value bnominal and
the gradient norm ||gk|| by the relation : bk = bnominal||gk||2.
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Fig. 1. (a) One hundred synthetic tensors (cropped) crossing with
the same angle (50◦). Estimated tensors with CUSP35-MFM (b) and
HARDI35-MFM (c) superimposed on the estimated fraction f1. It
qualitatively shows better results when using CUSP35-MFM.

Fig. 2. Assessment of the optimal number of repetitions (0 to 10)
for the hexa- and tetrahedral gradients for various total number of
images (5 b=0). Each pixel shows the mean of the metric over 800
tensors (8 crossing angles from 20 to 90◦, 100 configurations each).

estimation without any increase of the acquisition time and of
the geometric and intensity distortion.

3. RESULTS

CUSP-MFM estimator was parallelized in space and imple-
mented in C++. The model parameters were set as follows:
Diso=3.0 10−3 mm2/s, K=0.01, α=2. The fractions were
initialized to f (0)(·) = (0.1, 0.45, 0.45). The tensors were con-
strained to have a cylindrical shape (λj,2=λj,3 for j=1, 2).

We first assessed CUSP-MFM performances with syn-
thetic experiments. Consistently to real data a trace of
2.1 10−3 mm2/s and varying FA (FA1=0.9 ; FA2=0.7)
were considered for the tensor profile representing an in-
dividual fiber bundle. The fractions were set to (f0, f1, f2)
=(0.15, 0.6, 0.25). The DW signal was simulated with bnominal

=1000s/mm2 for different acquisition schemes and corrupted
by a Rician noise (SNR of 30dB for the b=0 images). The
estimated tensors were compared to the reference standard
by considering the average minimum angle (tAMA [2]) and
the average log-euclidean distance (tALED) which takes into

Fig. 3. Mean and variance of the tALED/fAAD metrics over the one
hundred synthetic tensors for various crossing angles. It shows the
quantitative improvement when using CUSP35-MFM.

Fig. 4. Mean and variance of the tAMA metric for various crossing
angles and estimation strategies. CUSP35-MFM has the best angular
resolution, especially for small angles.

account a possible permutation between the tensors:

tALED(Da, Db) = min
(
||Da

1 −Db
1 ||LE + ||Da

2 −Db
2 ||LE,

||Da
1 −Db

2 ||LE + ||Da
2 −Db

1 ||LE

)
.

The tALED metric enables to fully compare tensors and not
solely the main direction as with tAMA. The fractions were
compared in terms of average absolute difference (fAAD).
We generated a set of phantoms containing one hundred two-
tensor models crossing with a given angle in various config-
urations (see Fig. 1a). We first assessed how many repeti-
tions of the hexa- and tetrahedral gradients were necessary
to counterbalance the lower SNR associated with these high
b-value measurements. Fig. 2 suggests an approximately lin-
ear relationship between the optimal numbers of repetitions
and Ng the number of b 6= 0 images: #hexa=b0.07Ng −
0.9c, #tetra=b0.05Ng − 0.7c. In the following we focused
on very short duration acquisitions which are of great interest
for clinical applications. As suggested by Fig. 2 we consid-
ered CUSP35 (5xb=0, one shell 16directions, 1 x hexahedral, 2 x
tetrahedral) and compared it to a regular single-shell HARDI35
(5xb=0, one shell 30d.). Fig. 1b-c qualitatively shows the im-
provement when using CUSP35 instead of HARDI35. Fig. 3
quantitatively reports the estimation accuracy with the tALED
and fAAD metrics. Particularly, it shows that employing a
large number of directions (5xb=0, 251d.) does not dramati-
cally improve the results (HARDI256), whereas introducing
multiple non-zero b-values does (CUSP35). Fig. 4 compares
our approach to the ball-and-stick model of FSL. It shows
CUSP35-MFM to achieve in average the best angular reso-
lution, particularly for small angles, while it provides more



Fig. 5. Tensors estimated on clinical data, showing more realistic
configurations with CUSP35-MFM (see areas 1 and 2).

Fig. 6. Tractography results (no tensor model selection applied be-
fore generating the tracts, no fiber selection applied).

information for clinical studies by estimating the full tensors.
We also evaluated CUSP-MFM on clinical data (Siemens

3T Trio, 32 channel head coil, 66 slices, FOV=215mm, matrix=120
x120, resolution=1.8x1.8x2.4mm3, TE= 86ms/TR=9500ms for both
CUSP35 and HARDI35). The CUSP acquisition time was less
than 6 minutes and the MFM estimation time 1h30 on a 8
Cores 3Ghz Intel Xeon. The DW-images and gradients were
corrected for head motions via affine registration. Fig. 5
shows that CUSP35-MFM provides 1) a better tensor unifor-
mity and better crossing fibers (area 1) and 2) a better align-
ment of the two tensors in the single fiber region of the corpus
callosum (CC) (area 2). We implemented a multi-fiber sub-
voxel tractography algorithm which at each step selects the
most aligned tensor with the current fiber direction. Fig. 6 re-
ports the tractography results performed from a seeding region
of three slices drawn in the inter-hemispheric part of the CC.
First it shows the benefits of employing a multi-fiber model
rather than a one-tensor (1T) model. Second it shows better re-
sults when using CUSP35-MFM instead of HARDI35-MFM.
CUSP-MFM leads to 1) a smaller amount of fibers outside
of the CC and 2) a higher density of fibers in the frontal and
occipital lobes.

4. DISCUSSION

The major drawback to DSI, QBI, EQBI, DOT, SD or GDTI is
that they do not consider each fiber tract independently and do
not enable the assessment of individual fiber bundle properties
which is of central interest for many clinical studies. General-
ization of scalar diffusion parameters such as the generalized
fractional anisotropy (GFA) can be computed but represents
a DW signal dispersion property rather than a fiber property.
For example the GFA of two uniform crossing fibers has been
shown to decrease in the crossing region, which is not clini-
cally relevant. Two uniform crossing fibers should have con-
stant diffusion scalar parameters along their path.

Multi-fiber models enable to perform both tractography

and individual fiber bundles’ characteristics assessment. We
have proposed a novel multi-fiber assessment strategy CUSP-
MFM which relies on both a novel multi-tensor fitting proce-
dure (MFM) and a novel acquisition scheme (CUSP). CUSP
satisfies the need of multiple non-zero b-values without in-
creasing the TE and in consequence without any impact on
the acquisition time and on the geometric and intensity dis-
tortion. We experimentally observed CUSP-MFM to achieve
a better tensor angular resolution than HARDI-MFM (Fig. 4
and 5), whereas in an algebraic point of view only the tensor
magnitude and the fractions are collinear with HARDI [3].
However, consistently with the literature, we verify that prob-
ing the diffusion signal at higher b-values helps in differen-
tiating the compartments. To overcome the fact that images
acquired at higher b-values have a lower SNR, we provided a
relation to determine the optimal number of repetitions of the
high b-value measurements for a given acquisition length. We
currently focused our evaluation on very short duration acqui-
sitions of 35 images. It shows the ability of CUSP35-MFM
to recover complex brain fiber structure in a clinically com-
patible acquisition time. In future work we will investigate an
acquisition-based technique to select the number of fibers at
each voxel, based on analysing the DW signal at the multiple
b-values provided by CUSP. Preliminary results show good
results. We will also investigate in more details the optimal
parameters for CUSP-MFM. In particular we will assess the
selection of the optimal nominal b-value and evaluate the ben-
efits of employing a finer discretization of the cube’s edges
which will provide a higher number of unique non-zero b-
values.
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