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PURPOSE.  

• Biophysical models: describe the MR signal formation with a model whose parameters 
reflect the underlying biophysical mechanisms 

• Of crucial interest to characterize and compare tissue properties 
• In disease: in vivo biomarkers for diagnosis, prognosis, tailored intervention and evaluation of success of therapy 
• To study normal brain development 

 

• How to quantitatively evaluate various generative models? An open question 

HYPOTHESIS: A BIOPHYSICAL MODEL THAT WELL CAPTURES THE UNDERLYING BIOPHYSICAL MECHANISMS  

OUGHT TO ACCURATELY PREDICT THE SIGNAL FOR NEW GRADIENT DIRECTIONS AND STRENGTHS. 

Fitting error         +       Penalization term 

Quality of fit To avoid overfitting 

(With noise, a more complex model will always fit the data better) 
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Estimation of the generalization error 
  Leave-one-out: low bias but high variance 

  K-fold cross validation: lower variance but higher bias 

 Better approach: 

ASSESSMENT OF THE GENERALIZATION ERROR.  

• Common approach 

e.g. 
• Bayesian Information Criterion (BIC) 
• Aikake Information Criterion (AIC) 

Asymptotically optimal (Unlike BIC) 

Generalization error conditional on the observed data: 
Error made for a new hypothetical data point z0  
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But F is unknown 

Unconditional generalization error 

To take into account variability of the observed data points 
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New observations: 
          changes 
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Biophysical Model 

Bias<0 Bias>0 

Bias≈0 

632 Bootstrap estimation of the generalization error 
Efron, B., Estimating the Error Rate of a Prediction Rule : Improvement on Cross-Validation, Journal of the American 
Statistical Association, 1983. 78(382): p. 316-331. 

Counteract negative bias of fitting error with positive bias of the bootstrap estimate 

Was shown to have low bias and low variance [Efron1983] 
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RESULTS 

• We evaluated five biophysical model of the diffusion 
• CUSP65 acquisition - FOV=240mm, matrix-size=128x128, 68 slices, resolution=1.8x1.8x2mm3, TE=78ms, TR=10.1s, ~12min acquisition time 

Provides a large number of different b-values between 1000s/mm2 and 3000s/mm2 with low TE and high SNR.  

• Generalization error estimated with B=300 bootstrap iterations 

Fig.a - DTI is the worst predictor of the diffusion signal 

Fig.b - NODDI provides a lower generalization error in regions of crossing and close to the cortex because 
models the fascicle dispersion in each voxel and accounts for freely diffusing water.  

Fig.c - 1T+iso better predicts the signal than NODDI. This is likely because a number of parameters are fixed 
in NODDI (fixed parallel diffusivity, no radial diffusivity) 

Fig.d - Accounting for the heterogeneity of each compartment (DIAMOND) slightly improves the 
generalization error in regions of crossings. 

Fig.e - Accounting for each fascicle in each voxel and accounting for the compartment heterogeneity leads 
to the smallest generalization error 

CONCLUSION 

• Novel framework to achieve quantitative evaluation of biophysical 
models of the diffusion with in-vivo data. 

• Characterizes how well each model predicts unseen data 

• Identify the model that best captures the underlying biophysical 
mechanisms for the data at hand  

:  Number of times sample i is used in the 
training set of the bth bootstrap replicate 
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