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Abstract—The EEG source estimation problem consists of
inferring cortical activation from measurements of electrical
potential taken on the scalp surface. This inverse problem is
intrinsically ill-posed. In particular the dimensionality of cortical
sources greatly exceeds the number of electrode measurements,
and source estimation requires regularization to obtain a unique
solution. In this work we introduce a novel regularization func-
tion called cortical graph smoothing, which exploits knowledge
of anatomical connectivity available from diffusion-weighted
imaging. Given a weighted graph description of the anatomical
connectivity of the brain, cortical graph smoothing penalizes
the weighted sum of squares of differences of cortical activity
across the graph edges, thus encouraging solutions with consistent
activation across anatomically connected regions. We explore the
performance of the cortical graph smoothing source estimates
for analysis of the event related potential (ERP) for simple
motor tasks, and compare against the commonly used minimum
norm, weighted minimum norm, LORETA and sLORETA source
estimation methods. Evaluated over a series of 18 subjects,
the proposed cortical graph smoothing method shows superior
localization accuracy compared to the minimum norm method,
and greater relative peak intensity than the other comparison
methods.

I. INTRODUCTION

The aim of every functional neuroimaging modality is to
estimate neural activation in brain tissue. However, for all non-
invasive imaging modalities (including fMRI, PET, SPECT,
MEG, EEG), neural activation is not directly observed but
rather indirectly inferred on the basis of some other phys-
ical measurement. Interpreting data from any such imaging
modality relies upon an accurate forward model describing
the chain of physiological and physical processes that connect
brain activity to changes in the observed measurement. In
particular, EEG signal is generated by electrical currents flow-
ing throughout the head as a result of dipolar current sources
inside cortical tissue. In this case the forward model consists
of solving for the electrode voltages arising from a fixed set
of dipole sources; this can be solved numerically given a
description of the geometry and electrical conductivities of
tissues in the entire head. Estimating brain activity requires
inverting this forward model : i.e. finding the activity that
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matches the observed data when mapped under the forward
model.

The EEG inverse problem is fundamentally ill-posed. Ad-
ditionally, the number of electrodes is small compared to the
number of degrees of freedom of brain activity. This implies
that there are infinitely many possible configurations of current
sources which match the observed data under the forward
model, so that imposing some form of regularization is nec-
essary in order to obtain a unique solution. Many commonly
used regularization approaches are based on penalizing some
measure of smoothness of the solution, such its Euclidean
norm, or the norm of its gradient. A recent review of the
EEG inverse problem including many different regularization
methods is given in [1]. While such approaches lead to
simple and tractable solutions, they are based on very generic
assumptions about the underlying signal that do not exploit
specific knowledge about the human brain.

Within the past 15 years, there has been significant progress
in the development of methods utilizing diffusion-weighted
imaging (DWI) for non-invasive imaging and reconstruction of
white matter anatomical connectivity [2]. The water diffusion
in dense white matter fiber bundles, also known as white
matter fascicles, has been observed to be highly anisotropic
with primary orientation along the fascicle direction [3], [4],
due at least in part to cell membranes, axonal density and
myelination [5]. This allows inference about the white matter
structure and architecture by examination of the direction and
magnitude of average water diffusion constrained by the white
matter fiber bundles. The most common DWI technique has
been diffusion tensor imaging (DTI), which describes the
anisotropic diffusion at each voxel with a single tensor. It
enables estimation of the major fascicle orientation and char-
acterization of the white matter microstructure via diffusion
parameters such as the fractional anisotropy (FA) and the mean
diffusivity (MD).

Tractography [6], [7], [8], [9] can then be performed to
track of the macroscopic water displacement along pathways
from initial seed points, modeling the path of each fascicle as a
sequence of steps taken along the path by considering the local
diffusion information. Recently, approaches to characterize the
whole brain connectivity have been investigated [10], [11].
These are based on dense sampling of tract streamlines in the
white matter via whole brain tractography. The gray matter
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is then segmented into multiple parcels and the white matter
connectivity between the parcels assessed. Particularly, the
estimation of the connectome matrix enables description of
the connectivity between each pair of parcels by a square
symmetric matrix, in which the (i, j)th element describes the
connectivity strength between parcels i and j. Whole brain
connectivity approaches and novel analysis methods based on
graph theory have recently emerged as a major research area,
including the Human Connectome Project [12].

In this paper, we develop a novel methodology that exploits
the whole brain anatomical connectivity to constrain and
improve the EEG source estimation. This work is motivated by
the idea that as cortical activity is influenced by connectivity,
connectivity knowledge should inform the prior information
imposed by regularization. Our approach is based on the
distributed-dipole formulation of the EEG forward problem,
which involves discretizing the cortex into a large number of
parcels, each of which is associated with a single unknown
dipolar current source. We employ a triangulated mesh de-
scription of the cortical surface, so that each dipole source
is associated with a small cortical surface patch. Crucially,
both the EEG forward model and the connectome matrix are
computed using these same cortical patches. By fusing the
distributed dipole and connectome matrix, we may view the
EEG inverse problem as one of estimating a function defined
on the vertices of a weighted graph, where the edge weights
of the graph are given by the connectome matrix elements.
Interestingly, this viewpoint places EEG source estimation
within the context of signal processing on weighted graphs
[13], [14], [15]. Previous work by Phillips [16] exploited brain
tissue geometrical knowledge and spatial adjacency of sources
for EEG source estimation, but did not employ tractography.

The fundamental assumption underlying our approach is
that strongly connected cortical regions will have similar
activity. Our novel regularization functional, termed cortical
graph smoothing (CGS), is formed by penalizing the squares
of differences of source activity, summed over the edges of the
connectome graph. We describe the interpretation of the CGS
as acting by penalizing the derivatives of the activity treated
as a function defined on the vertices of a weighted graph. We
employ this CGS prior penalty with a quadratic data fidelity,
yielding a variational approach with an analytic linear solution.

Evaluating the performance of source estimation on real data
is complicated by the lack of ground truth. We address this
by analyzing the source estimation results for an experimental
setting where the location of expected activity is well known.
In particular, we employ a motor task involving finger move-
ments, where the origin of the motor potential is expected to
be localized to a well defined region of the contralateral motor
cortex. Our experimental results show quantitatively improved
localization performance of the CGS compared to the widely
used minimum norm approach.

We note that work using a different graph-based prior based
on sparse approximation with graph wavelets, but employing
similar methods for the EEG forward modeling and connec-
tome graph construction [17], has been published previously.
Our work in this paper extends the preliminary work in [18]
on cortical graph smoothing by more extensive validation,

Scalp Skull CSF GM WM Eyeball
0.44 0.018 1.79 0.25 0.35 1.5

TABLE I
CONDUCTIVITIES OF DIFFERENT HEAD TISSUES, IN Ω−1m−1

comparison to alternative approaches, and by more principled
selection of regularization constants.

II. ELECTRICAL HEAD MODELING

This current work has been developed in the context of
ongoing research on constructing accurate numerical models
of the physics of head electrical conduction for both EEG and
event related potential (ERP) analysis [19]. The EEG signal
consists of electric potentials on the scalp produced by current
flowing throughout the head, arising from current sources
within cortical tissue. These arise from microscopic synaptic
currents following neurotransmitter release that are organized
by the laminar structure of cortical tissue into macroscopic
dipolar current sources, oriented perpendicular to the cortical
surface.

A. Inhomogeneous Poisson Equation

The goal of the forward electrical model is to compute
the scalp voltages arising from a given set of dipolar cur-
rent sources. We ignore capacitive and inductive effects and
consider the head to be a purely resistive medium, with a
spatially varying isotropic conductivity σ(x, y, z). While some
head tissues (especially skull and white matter) are known to
have electrical conductivities which deviate from isotropic, we
do not consider this extension here. In the isotropic case the
current flux ~J is proportional to the electric field ~E, so that
~J = σ ~E = σ∇φ where φ(x, y, z) denotes the electric potential
at each point in the head. Conservation of charge implies that
∇ · ~J = 0, so that φ satisfies the inhomogeneous Poisson
equation

∇ · (σ∇φ) = s, (1)

with the no-flux boundary condition σ∇φ · ~n = 0 on the
scalp surface, where ~n is the scalp surface normal vector,
and where the scalar function s describes current sources
or sinks. True dipolar current sources correspond to a limit
case when a pair of a localized source and sink are brought
infinitesimally close together; in practice during numerical
solution, approximate dipole sources are described by setting
s = 0 everywhere except at a pair of nearby voxels, where s is
set to be positive on one, and negative on the other. Note that
equation (1) is valid in the quasi-static limit, where current
varies slowly enough so that contributions to the potential
from both time-varying magnetic fields and capacitive effects
are negligible. The EEG signal does not have appreciable
frequency content above about 100 Hz, sufficiently low for
the quasi-static approximation to apply.

B. Tissue Segmentation and Cortical Surface Partitioning

This work employs subject-specific head models constructed
from individual anatomical T1 MR images. Both the con-
figuration of the conductivity σ(x, y, z) and the locations of
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the distributed dipole sources are determined from a 3D map
of head tissues. The conductivity σ is given by assuming a
constant conductivity for each tissue type as shown in table I.
The tissue conductivities were fixed based upon previous work
and empirical measurements reported in the literature (see [20]
for further references). This approach, sometimes referred to
as a multi-shell or multi-compartment head model, depends on
the ability to accurately segment head images into component
tissue types. We construct subject-specific head models by
acquiring and segmenting a high resolution (1 mm3 voxel) T1-
weighted MRI image, classifying each image voxel as either
air or one of the six following tissues: skull, scalp, cerebral-
spinal fluid, gray matter, white matter or eyeball. This image
segmentation problem is computed using the BrainK software
package developed at the NeuroInformatics center [21].

An important feature of this work is that we make extensive
use of a triangular mesh describing the outer cortical sur-
face. This surface is defined as the interface between grey
matter and cerebrospinal fluid, and is computed using the
marching cubes algorithm for level surfaces. This yields two
disconnected surface meshes, one for each hemisphere. The
distributed dipoles we use are placed by partitioning these
cortical meshes into a large number of approximately equal-
sized patches, which we denote by Γi.

Each mesh was partitioned into patches using a spec-
tral graph partitioning algorithm implemented as part of the
CHACO software package [22]. This approach is based on
partitioning the mesh dual graph, defined as the graph whose
nodes are the mesh triangles and whose edges describe the
the triangle adjacency relations (see [23] for a review of
mesh partitioning). In this work we divide each hemisphere
into 1200 patches, yielding patches of area roughly 85 mm2.
For each patch, we compute the patch center ci and the
outward facing normal vector ~ni. The choice of this number
of patches was motivated by the application for EEG. For
this application, patch sizes were chosen small enough to
avoid any significant intra-patch heterogeneity of the surface
normal vectors, which would invalidate the use of a single
oriented dipole for each patch. We note that as the mesh
partitioning is driven purely by the geometry of the cortical
surface, the resulting patches are not constrained to correspond
to standard anatomical regions of interest (in particular they
are not subdivisions of Brodmann’s areas).

C. Leadfield Matrix

The distributed dipole formulation involves computing so-
lutions to (1) for a large set of dipolar sources.

In this work we primarily employ a cortical surface-normal
distributed dipole set, where we place the dipole sources ~ji
at the patch centers ci, and parallel to ni so they are normal
to the cortical surface. Choosing a finite number of source
dipoles effectively discretizes the space of source currents.
These dipoles then form a basis for the set of cortical sources
we wish to estimate, i.e. we will consider only source current
distributions of the form

J =
∑
i

a(i)~ji. (2)

We may consider J ∈ RNd , where Nd is the total number of
dipoles, to be the vector of coefficients in this expansion, i.e.
Ji gives the activation of the ith dipole.

We are interested in describing the forward model of the
potential φ not at all points in space, but at the specific
locations on the scalp where the EEG sensors are located.
For a set of Ne electrodes, we let the vector ϕ ∈ RNe

denote the values of the potential at the electrode positions.
Let ϕ(i) ∈ RNe be the potentials at the sensors for the solution
to (1) when the ith dipole is activated with unit current. As
equation (1) is linear in φ, its solutions obey superposition,
which implies that

ϕ =
∑
i

ϕ(i)Ji (3)

are the sensor potentials for the solution when the dipole
source current is described by J . This relationship can be
compactly expressed as ϕ = KJ , where the Ne ×Nd matrix
K =

(
ϕ(1), ...ϕ(Nd)

)
is the leadfield matrix.

For completeness, we note that one may also form dis-
tributed dipoles without explicitly using the cortical surface.
This is done by placing dipoles at Nd points on a regular
3D grid, restricted to lie within the grey matter. As the
orientation of these volumetric dipoles is not fixed by the
cortical surface normal, they are represented by an ordered
triple of orthogonal dipole components in the x,y and z
directions. By concatenating these three unknown coefficients
at each dipole, one may define the current source vector J to
be of length 3Nd, and then define a Ne×3Nd leadfield matrix
K so that the relation ϕ = KJ holds. In this work we employ
the cortical surface-normal dipoles for the proposed cortical
graph smoothing method. This dipole set was also used for
the minimum norm, weighted minimum norm, and sLORETA
comparison methods, while volumetric dipoles based on a
regular 7mm 3D grid are used for the LORETA comparison
method.

We solve the inhomogeneous poisson equation numerically
with a finite-difference method on a 1mm3 grid, corresponding
to the resolution of the T1-weighted MRI image. Our nu-
merical solver is based on the alternating difference implicit
(ADI) scheme, algorithmic details may be found in [20]. Using
optimized GPU codes developed at the NeuroInformatics
center, we were able to compute a subject specific leadfield
matrix in 15 minutes using a 3-node subset of a GPU-enabled
cluster employing 9 Nvidia Tesla M2070 GPU cards.

The locations of the electrodes are determined in a subject
specific manner, based a the geodesic photogrammetry system
described in [24]. Briefly, this system consists of multiple
inward-facing cameras on fixed geodesic frame which the
subject can sit inside of while wearing the electrode net.
A point cloud of sensor positions can be determined from
these multiple photographs, this point cloud is later registered
with the scalp surface of the head to determine the electrode
positions within the head model.

III. CONNECTOME GRAPH ESTIMATION

The cortical graph smoothing approach requires that the
anatomical connectivity derived from DWI and the distributed



4

FAseed Ns s γ δ α β FAmin θmax

0.6 30 1/3 mm 0.5 0.5 0.5 0.5 0.2 30◦

TABLE II
TRACTOGRAPHY PARAMETERS USED. DEFINITIONS GIVEN IN THE TEXT.

dipoles be defined on the same space. We achieve this by using
each subjects T1-weighted image to define a set of coordinates,
and register each subject’s DTI to the corresponding T1-
weighted image prior to further analysis. Following this, the
various products of both images (namely the tract streamlines
and the cortical surface) are naturally aligned. We note that
each subjects connectome graph is computed using subject-
specific T1 coordinates, in particular we do not perform
registration onto a generic atlas T1 image.

A. Diffusion Tensor Estimation and Registration

We estimate diffusion tensors from the raw diffusion
weighted images with a least square fitting procedure using
the TEEM software package [25]. The transformation between
the DTI space and the T1-weighted is estimated by registration
of the mean diffusivity image to the T1-weighted utilizing
the mutual information metric [26], well-suited for multi-
modal image registration. [27]. The diffusion tensor field is
then warped to the common space by utilizing log-Euclidean
tensor interpolation. This prevents the interpolated tensors
from experiencing the “swelling effect” which can be observed
with conventional Euclidean tensor interpolation [28] and
makes the estimated tensors larger than they should be.

B. Tractography

The cortical connectome is computed by using a large
number of tract streamlines generated by tractography from
the diffusion tensors. We consider the diffusion tensor field
D warped to the common space so that the generated tracts
are aligned to the meshes defining the cortical patches. We
use a stochastic streamline tractography algorithm [29] that
combines the speed and efficacy of deterministic decision
making at each voxel with probabilistic sampling from the
space of all streamlines. Our tractography method improves
the simple streamlining through the use of tensor deflection
[30], directional inertia, and stopping criterion inertia as de-
scribed below.

We initiate tracts from seed voxels distributed densely
throughout the white matter by choosing voxels with high
fractional anisotropy (FA > FAseed). This corresponds to
voxels which contain mostly a single fascicle orientation, and
therefore to voxels with reliable estimation of the fascicle
orientation. A fixed number Ns of streamlines are initialized
at stochastically sampled locations inside each seed voxel, and
the tracts are constructed by stepping with subvoxel resolution
through the tensor field. From a subvoxel location pk, a new
point along the streamline is identified by stepping with a fixed
step size s in the direction vk+1: pk+1 = pk + vk+1s. The
direction vk+1 of the streamline is calculated using a combi-
nation of the primary eigenvector and tensor deflection, while

(a) (b) (c)
Fig. 1. View of (a) cortical surface mesh (colored to distinguish patches),
(b) selected tracts and (c) surface and tracts, superimposed.

accounting for the previous direction vk of the streamline:

vk+1 = γvk + (1− γ)
(
δ(Dk+1)2vk + (1− δ)ek+1

)
, (4)

where Dk+1 is the diffusion tensor at point pk, ek+1 is a
normalized principal eigenvector of Dk+1, and γ and δ are the
direction inertial momentum and the tensor deflection fraction,
respectively.

Streamlines are terminated when the fractional anisotropy
falls below a specified threshold, or when the tract bending
angle exceeds a specified threshold. We avoid loss of con-
nectivity due to local aberrations by incorporating a low-pass
filter along the estimated pathway for the stopping criteria. To
do so, we evaluate the trajectory FA F k+1 and the trajectory
angle θk+1 at step (k + 1) by:

F k+1 = αF k + (1− α)FA(Dk+1)

θk+1 = cos−1
(
β cos(θk) + (1− β)ek+1 · vk+1

)
, (5)

where α and β are momentum parameters. We terminate the
tractography whenever F k+1 < FAmin or θk+1 > θmax. Such
a low-pass filtering and the use of tensor deflection enables
better tractography in regions of crossing fibers.

In table II we give the values of the tractography parameters
used. In Figure 1 we illustrate the cortical surface mesh parti-
tioned into patches and overlaid on a subset of corticocortical
tracts.

C. Tract filtering and binning

The output of the tractography is a set of tract streamlines
γk : [0, 1] → R3, where 1 ≤ k ≤ Ntracts. In this work,
we compute the connectome using only tract streamlines
that directly connect cortex to cortex. For each tract γk,
we compute nks and nke , the cortical patches closest to the
startpoint and endpoint, as

nks = argmin
n

d(Γn, γk(0)), nke = argmin
n

d(Γn, γk(1)),

where d(Γn, p) is the distance from a point p to the nth cortical
patch. The kth tract is rejected as not corticocortical if either
d(Γnk

s
, γk(0)) or d(Γnk

e
, γk(1)) exceed the distance threshold

dcthresh. Let Icc be the set of cortical-cortical tract indices.
We set dcthresh =10mm, resulting in discarding on average
65% (stdev=6%) of the total tracts.
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The anatomical connectome matrix Atr ∈ RNd,Nd is then
computed explicitly as

Atri,j =
1
Ns

∑
k:k∈Icc,(nk

e ,n
k
s )∈{(i,j),(j,i)}

1
l(γk)

(6)

where l(γk) is the length of the kth tract. We divide by l(γk)
to counteract the bias towards longer tracts due to dense
seeding throughout white matter, as the dense seeding implies
that every physical tract would generate a number of tract
streamlines in proportion to its length.

D. Hybrid Local / Nonlocal connectome matrix

The tractography-based connectome matrix Atr described
above is based entirely on white matter tract streamlines that
can be resolved by DTI. However, local radial connections
through the gray matter also exist that cannot be represented
with diffusion-weighted imaging. Additionally, local short
range “U-fibers” connections may connect gray matter regions
through the white matter but are challenging to estimate with
DTI at conventional resolution. These considerations motivate
the inclusion of a local connectome matrix Aloc ∈ RNd×Nd ,
derived purely from spatial adjacency of the cortical surface
patches. Including this imposes prior belief that there exist
local connections between regions that are not resolved by the
long-range tractography. We form Aloc by setting Aloci,j to be
the length of the border (in mm) between the patches Γi and
Γj . In particular, this sets Aloci,j = 0 for non-adjacent patches.

We then form the hybrid local/nonlocal connectome matrix

A = λtrA
tr + λlocA

loc, (7)

for non-negative regularization parameters λtr and λloc. These
parameters will determine both the relative contribution of the
tractography based and local connectomes, and the overall
weight of the cortical graph smoothing penalty. A system-
atic procedure for determining them from observed data is
described in section IV-A.

IV. CORTICAL GRAPH SMOOTHING

The source estimation problem at a single spatial timepoint
consists of estimating source currents J ∈ RNd given an
observation of ϕ ∈ RNe . A set of currents J will match
the observed data if it satisfies ||KJ − ϕ||2 = 0. Directly
minimizing ||KJ −ϕ||2 cannot yield a unique solution as the
equation ϕ = KJ is underdetermined. Cortical graph smooth-
ing employs a variational framework, where the desired source
currents are given by the minimizer of ||ϕ−KJ ||2 +fcgs(J).
Here fcgs : RNd → R is the CGS penalty function, which
depends on the hybrid local/nonlocal connectome matrix A.

The CGS penalty is motivated by the hypothesis that con-
nected brain regions should have similar activity. We impose
this by penalizing squares of differences in activity between
connected cortical patches. Additionally, as the edges of our
connectome graph are weighted, we may scale the amount of
the penalty incurred across any pair of patches by the strength

of their connectivity. Specifically, given a weighted graph with
edge weights ai,j , we define

fcgs(J) =
∑
i∼j

ai,j(Ji − Jj)2 (8)

with the sum taken over all pairs of connected vertices.
For simplicity, we reformulate (8) using the graph Laplacian

matrix L, defined as follows. Given any symmetric adjacency
matrix A, L is given by L = D−A, where D is the diagonal
degree matrix with ith element Di,i =

∑
j Ai,j , i.e. the

(weighted) degree of the ith vertex. A relatively straightforward
calculation [31] shows that JTLJ =

∑
i,j ai,j(Ji − Jj)2,

exactly the same as the CGS penalty. Using the hybrid
local/nonlocal connectome matrix from (7), we may write
fcgs(J) = λtrJ

TLtrJ + λlocJ
TLlocJ , with the tractography-

based and local graph Laplacians Ltr and Lloc defined accord-
ingly. The CGS solution is defined by

Ĵcgs(ϕ) = argmin
J
||ϕ−KJ ||2 + λtrJ

TLtrJ + λlocJ
TLlocJ.

(9)
As both the data fidelity and the prior penalty are quadratic in
J , this problem has an analytic solution, linear in ϕ, given by

Ĵcgs = (KTK + λtrLtr + λlocLloc)−1KTϕ. (10)

Further intuition into the cortical graph smoothing can be
gained by considering it as a penalty on a type of derivative of
the source current J . If one considers the case of a connectivity
graph corresponding to a regular 2-D grid, with each grid
vertex connected with equal weight to its 4 nearest neighbors,
the graph Laplacian L is exactly equal to the standard 5-point
stencil for approximating the continuous Laplacian operator
−∆ = −( ∂2

∂x2 + ∂2

∂y2 ), so that Lf ≈ −c∆f for some constant
c. Integration by parts shows

fTLf ≈ c
∫
f∆fdxdy = c

∫
|∇f |2dxdy, (11)

if, for instance, lim(x,y)→∞ f = 0 so that the surface terms
may be ignored. These considerations show that the CGS
penalty is analogous to more classical smoothing penalties on
the spatial derivatives. Indeed, for the case when λtr = 0, the
CGS penalty reduces to a purely local spatial smoothing.

A. Estimation of Regularization Parameters

The CGS method requires estimation of the regularization
parameters λloc and λtr describing the relative importance of
the local and nonlocal components of the graph. There is a
very wide literature on criteria for estimating regularization
constants, two common approaches being the L-curve anal-
ysis [32] and generalized cross validation [33]. Additionally,
the restricted maximum likelihood (ReML) method provides
another, statistically motivated approach for estimating regu-
larization constants, which has been used previously for com-
bining multiple weighting matrices for the weighted minimum
norm approach for EEG source estimation [34], [35].

We have explored the use of generalized cross validation,
but have found it to lead to overestimated parameters. We have
instead pursued a modified L-curve approach. We first describe
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the L-curve method for determining a single regularization
parameter for the variational problem

J∗(λ) = argmin
J
||KJ − ϕ||2 + λJTLJ. (12)

In this case, the L-curve is consists of the points defined by
γ(λ) = (ρ(λ), η(λ)), where ρ(λ) = ||KJ∗(λ)− φ||2 and η =
J∗(λ)TLJ∗(λ). This curve typically displays a characteristic
L-shape, typically one chooses λ corresponding to the highest
value of the curvature of γ.

For our problem, we first rescale the ρ and η axes before
computing the curvature. We do this by setting ρs = ρ/ρmax
and ηs = η/ηmax where ρmax = limλ→∞ ρ(λ) and ηmax =
limλ→0 η(λ). We then define the (rescaled) curvature κs(λ)
according to

κs(λ) =
ρ′sη
′′
s − ρ′′sη′s

(ρ′2s + η′2s )3/2
. (13)

We have developed a modified L-curve procedure enabling
estimation of multiple regularization constants. Similar in
spirit to coordinate ascent, this approach proceeds by al-
ternately fixing all regularization constants but one, then
maximizing the curvature in terms of the single “active”
regularization constant. We note that other authors have ex-
plored extensions of the L-curve to multiple parameters using
alternative approaches : [36] constructs a multidimensional L-
hypersurface and maximizes Gaussian curvature, while [37]
relies on minimizing a simpler surrogate functional measuring
distance from the L-hypersurface to a shifted origin.

We describe our modified L-curve approach for the case
of N regularization constants ~λ = (λ1, λ2, ...λN ). For con-
venience, we write ~λci = (λ1, .., λi−1, λi+1, ..λN ). The CGS
solution (corresponding to N = 2) is given by

JJ(~λ) =

(
KTK +

N∑
i=1

λiLi

)−1

KTφ. (14)

The axes of the N separate L-curves are given by the univari-
ate functions ρi(λi; ~λci ) = ||KJ(~λ) − φ||2 and ηi(λi; ~λci ) =
JT (~λ)LiJ(~λ). We define the rescaled ρs,i and ηs,i as above,
and use them to define the curvature κs(λi, ~λci ) as in (13).
Given some initial values ~λ(0) for the regularization constants,
we form the update step by choosing λ

(n)
i to maximize

κs

(
λi; ~λci

(n−1)
)

. This optimization is performed numerically

using a Quasi-Newton optimization algorithm (as implemented
by the fminunc routine in MATLAB), which employs an exact
analytic expression for the gradient of curvature κ′s. Details
of this, depending on analytic formulae for the first three
derivatives of ηi(λ) and ρi(λ), are given in Appendix A. An
outline of the overall algorithm is shown in table III.

We note finally that both the original and modified L-curve
methods may be applied to a block of time series data φ(tn)
for n = 1...Nt, by setting ρ(λ) =

∑
n ||KJ∗(λ, tn)−φ(tn)||2

and η(λ) =
∑
n J
∗(λ, tn)TLJ∗(λ, tn), where J∗(λ, tn) is

defined by 12 with φ = φ(tn). This gives regularization
constants that do not vary with time, that are well adapted
for the data over the entire time window. We will use this
approach for our later experimental results.

Initialize ~λ(0)

n← 0
repeat

for i = 1...N do
ρmax,i ← limt→∞ ρi(t)
ηmax,i ← limt→0 ηi(t)

λ
(n)
i ← argmaxt κs

“
t; ~λc

i

(n−1)
”

end for
n← n+ 1

until |~λ(n) − ~λ(n−1)| < εtol

TABLE III
PSEUDOCODE FOR MODIFIED L-CURVE ALGORITHM

V. EXPERIMENTAL VALIDATION

Evaluating the performance of any new source estima-
tion method is challenging because of the lack of ground-
truth knowledge of the true underlying cortical activity. One
approach to evaluating source estimation performance is to
examine the source estimates for an experimental paradigm
where it is well established from prior neuroscience knowledge
where the expected sources should be found.

In this work, we assess the performance of the proposed
CGS method by investigating the quality of its estimated
sources for a set of averaged event-related potentials (ERP’s)
for a simple button-pushing task. A prominent feature of
the ERP in this case is the motor potential (MP), a focal
contralateral surface negativity occurring 10-180 ms before
the recorded button press [38]. The MP is generated by
activity in the motor cortex associated with hand movement,
specifically in the “hand knob” which can be reliably identified
in MRI imaging [39]. It is precisely this feature of the motor
potential experimental paradigm which allows us to use the
location of an identifiable anatomical feature (the hand knob)
as a proxy for the unknown ground truth cortical activity in
order to evaluate the quality of the source estimates. We thus
expect source estimates for this motor ERP to show a salient,
localized peak near the hand knob, during the expected time
range. In particular, the relative intensity of this peak, as well
as its distance from the hand knob, can be used as quantitative
measures of algorithm performance.

We compare the source estimation results from CGS against
a suite of comparison source estimation methods that are
widely used, namely the minimum norm (MN), weighted
minimum norm (WMN), low resolution electrical tomogra-
phy (LORETA) and standardized low resolution brain brain
electromagnetic tomography (sLORETA) approaches.

A. Motor potential task paradigm

In this study, collected at the University of Oregon, subjects
had EEG acquired with a 256-channel HydroCel Geodesic
Sensor Net (Electrical Geodesics, Inc.). Recordings were refer-
enced to Cz, and bandpass filtered (0.1-100Hz) prior to being
sampled at 250 Hz with a 16-bit ADC. During the study, sub-
jects were asked to fixate on a visual crosshair, and then push
a button with a single finger (right/left thumb/pinky) when the
crosshair changed color. The finger conditions (RT,LT,RP,LP)
were organized in separate blocks, data was collected for long
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enough ( 2 hrs) to ensure at least 100 trials per condition. Data
presented in this work were collected on a set of 18 subjects.

Following collection, the data were bandpass filtered (pass-
band 3-10 Hz) in order to accentuate the known spectral char-
acteristics of the desired MP signal. Further postprocessing
consisted of identification and removal via interpolation of
bad channels, segmentation of the EEG based on timing of
the recorded button press, and averaging over the extracted
segments to generate the motor ERP.

B. Image data collection

The MR imaging was acquired on a Siemens Allegra MRI
scanner. Our protocol includes a high-resolution 1 mm3 T1-
weighted image used to construct the subject-specific head
model for EEG source localization and to construct the cortical
surface meshes. The T1 image was acquired with a matrix
size of 256 × 256, 160 slices, TR=2500 ms and TE=4.38
ms. Our imaging protocol also includes a diffusion-weighted
acquisition consisting of 10 unweighted (b = 0) images and
60 gradient weighted images at b = 700s/mm2 with a matrix
size of 128 × 128, 60 slices, 2 × 2 × 2mm3 cubic voxels,
TR=10900 ms and TE=113 ms.

C. Evaluation of Source Estimates

For both the proposed CGS and the comparison methods,
we analyze source estimation performance by identifying the
largest local maxima of the estimated current sources within
a restricted region of both space and time. For the temporal
window, we restrict our search for the peak activity to between
10 and 180 ms before the button press. The spatial restriction
is described by a spatial region Ωsearch near the hand knob,
and is constructed as follows. We first determine a single voxel
corresponding to the location of the hand knob by inspection of
the T1 MRI image (see Figure 2(a) ), following the axial plane
approach recommended in [39]. We then hand-select Ωsearch

for each hemisphere of each subject to consist of patches
within the precentral gyrus, containing the closest patch to
the hand knob. Over the 36 Ωsearch sets defined in this work,
the maximum distance from the patch closest to the hand knob
was 32 mm (average 23.6 mm, std 3.2 mm). This process is
illustrated in Figure 2 (a-b).

For convenience, in the following we let X ∈
{CGS,MN,WMN,LORETA, sLORETA} index the dif-
ferent source estimation methods to be compared. Given
the ERP time series φ(tn), we compute (non time-varying)
regularization constants for method X by using the modified
L-curve method applied to all φ(tn) from the time window
defining Ωsearch. We then compute time series of source
current estimates JX(tn) by applying method X to each
timepoint.

Let JX(k, n) = (JX(tn))k be the estimate for method
X at dipole k and timepoint n. We say that JX has a
magnitude local spatial maximum at patch k at timepoint n if
|JX(k, n)| ≥ |JX(r, n)| for all dipoles r adjacent to dipole k.
For the methods employing the cortical surface-normal dipoles
(CGS, MN, WMN and sLORETA), this adjacency relation
is encoded by the local adjacency matrix Aloc detailed in

(a) (b)

(c) (d)

(e) (f)
Fig. 2. Comparison of source estimation results, for RP button press condition
in a single subject : (a) axial MRI slice showing location of hand knob in
left hemisphere, (b) inflated cortical surface showing cortical patch closest to
hand knob (red) and hand segmented search region Ωsearch (blue), (c) CGS,
(d) MN, (e) WMN, (f) sLORETA. All source estimates are shown at -100ms.
For (c)-(f), the color-scale is set so that the color-bar maximum is equal to 1.2
times the maximum absolute value of the source estimates within Ωsearch.
Note the clearer, more salient peak near the hand-knob for the CGS method.

section III-D, as r is adjacent to k iff Aloc(r, k) > 0. In
contrast, for the LORETA method which employs a 3D grid of
volumetrically defined dipoles, we use the standard 6-neighbor
adjacency on the 3D grid.

For all methods, we first find the set of all magnitude
local spatial maxima for all timepoints between 10 and 180
ms before the button press. For each such peak, we define
the peak-RMS ratio ρrms(k, n) as |JX(k, n)|/p(n), where

p(n) =
(

1
Nd

∑
k JX(k, n)2

)1/2

. We then select k∗ and n∗

as the patch index and timepoint corresponding to the peak
with the largest value of ρrms, so that k∗ and n∗ represent an
estimate of the location and time of the peak MP source.
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(a) (b)
Fig. 3. LORETA source estimates, displayed at the volumetric dipole
locations. (a) Locations of dipoles within Ωsearch for volumetric dipole set
(blue), and volumetric dipole closest to hand-knob (red); (b) Magnitude of
LORETA source estimates. While this method does show a local maximum
within Ωsearch, observe that the peak is much less salient than for the CGS
method.

We use ρrms as a quantitative measure of the quality of
the source estimate. For convenience, let ρrmsX be the value
of ρrms(k∗, n∗) at the identified peak of the rms-normalized
source estimate for method X . Note that due to the normaliza-
tion by the rms power p(n) which varies at each timepoint n, it
may not necessarily be the case that |JX(k∗, n∗)| ≥ |JX(k, n)|
for all n, k in the spatiotemporal search window.

Additionally, we compute the estimated localization error
dhk(k∗) to be the Euclidean distance from dipole k∗ to the
hand knob. Define dhkX to be this distance for the source
estimate given by method X . We will say that method A
has better localization than method B, for a particular subject
and task condition, if dhkA < dhkB . Note that for comparisons
between methods using the same set of distributed dipoles
(e.g. for comparisons amongst CGS,MN,WMN and sLORETA
using the cortical surface-normal dipoles), ties may occur
when the located peak dipole k∗ is the same for both methods.

D. Results

For all of the source estimation methods considered, we
have evaluated the hand-knob distance dhk and the peak-
RMS ratio ρrms, over a total of 72 different ERP’s (18
subjects under each of the 4 different finger task conditions).
These results are shown in Table IV. In addition to tabulating
the mean and median of these two quantitative measures,
we indicate the number of times each comparison method
performs better (e.g. higher ρrms or lower dhk) or performs
worse than the CGS method.

The CGS result gives lower hand-knob distance than the
minimum norm method, and similar hand-knob distances to
the remaining comparison methods. When compared against
the MN method, CGS produced peak dipole locations that
were as close or closer to the hand-knob location on 53 of
72 ERP’s, while against the other comparison methods CGS
produced lower hand-knob distances roughly half the time. We
have more carefully quantified this comparison by a series of
Wilcoxon signed rank tests [40], to investigate whether the
medians of the CGS and the comparison methods differ. As
can be seen in Table IV, the CGS method produced statistically

CGS MN WMN LORETA sLORETA

mean dkh 16.32 18.32 17.39 15.66 16.09
median dkh 16.84 18.45 17.23 15.31 15.68
# better / tied / worse
than CGS (by dhk)

0/72/0 19/18/35 26/13/33 34/0/38 36/7/29

dhk SR test p-value
(comparing to CGS)

1 0.00234∗ 0.158 0.504 0.613

mean ρrms 2.42 2.41 2.19 0.97 1.70
median ρrms 2.11 1.85 1.69 0.76 1.47
# better / tied / worse
than CGS (by ρrms)

0/72/0 31/0/41 25/0/47 5/0/67 18/0/54

ρrms SR test p-value
(comparing to CGS)

1 0.432 0.0156∗ 7.4e-13∗ 4.31e-06∗

TABLE IV
SUMMARY OF SOURCE ESTIMATION PERFORMANCE OVER 72 ERPS (18
SUBJECTS, 4 TASK CONDITIONS), AS MEASURED BY THE HAND-KNOB
DISTANCE dhk AND THE PEAK-RMS RATIO ρrms FOR THE CORTICAL
GRAPH SMOOTHING (CGS), AND COMPARISON METHODS. REPORTED

P-VALUES ARE FOR THE SIGNED-RANK TEST FOR THE MEDIAN OF EACH
METHOD DIFFERING FROM THE MEDIAN OF THE CGS METHOD.

significantly lower hand-knob distance median than the MN
(p=.002), whereas the difference between the CGS and the
other comparison methods did not appear statistically signifi-
cant.

Complementary results are seen for the comparison based
on the peak-RMS ratio ρrms. In this case, the MN and
CGS methods have similar median values for ρrms, while
the CGS method performs significantly better than the WMN,
LORETA or sLORETA methods. As measured by the signed-
rank test, the statistical significance of the difference between
CGS and the LORETA and sLORETA methods is especially
strong. These results are important as the confidence and
interpretability of an observed local peak is stronger if the peak
is highly salient. Taken together, these two quantitative mea-
sures demonstrate that the CGS method is competitive with,
and often superior to, several widely used source estimation
methods.

We show source estimates from a single subject illustrating
these differences in Figures 2 and 3, for the RP button press
condition. In Figure 2, we display the CGS, MN, WMN and
sLORETA source estimates at 100 ms before the button press.
Additionally, we illustrate the point identified as the hand-knob
location, and show the Ωsearch region for the contralateral
(left) hemisphere. For this ERP, these four methods all show
a peak near the hand-knob. For visualization purposes, we
chose the color-axis scaling such that the color-bar maximum
is equal to 1.2 times the maximum absolute value of the source
estimates within Ωsearch. Accordingly, the peak near the hand-
knob appears with similar coloring in all of these figures. Due
to the color-axis scaling the comparison methods showing
a low relative peak saliency (i.e. low ρrms) exhibit larger,
“noisier” looking source estimates elsewhere on the cortical
surface. In contrast, the peak for the CGS method appears
much more salient than the surrounding activity than the other
methods shown. While only a single ERP is shown due to
space limitations, we have found this qualitative comparison
typical across the rest of the data considered in this work.



9

CGS LOC-ONLY TR-ONLY

mean dkh 16.32 17.85 15.38
median dkh 16.84 17.89 16.25
# better/tied/worse
than CGS (by dhk)

0/72/0 13/27/32 35/14/23

dhk SR test p-value
(comparing to CGS)

1 0.018∗ 0.26

mean ρrms 2.42 2.13 1.93
median ρrms 2.11 1.98 1.53
# better/tied/worse
than CGS (by ρrms)

0/72/0 27/0/45 27/0/45

ρrms SR test p-value
(comparing to CGS)

1 0.0168∗ 0.0179∗

TABLE V
COMPARISON OF CGS TO RESTRICTED CGS SOLUTIONS USING ONLY
LOCAL (LOC-ONLY) OR ONLY TRACTOGRAPHY-BASED (TR-ONLY)

CONNECTOMES.

Finally, we note that these results are shown on inflated cortical
surfaces for visualization purposes; the cortical inflation was
not used for the computation of the source estimates.

Results for LORETA are displayed on the volumetric dipole
set, where each volumetric dipole location is rendered as a
single sphere, in Figure 3. While the results are somewhat
harder to see visually than those displayed on the inflated
cortical surfaces, LORETA does show a small local maximum
within the volumetric Ωsearch. However, the saliency of this
peak is much lower than that of the CGS method, as is
consistent with the significantly lower median value for ρrms

observed for LORETA.
As the CGS approach employs the hybrid local/nonlocal

connectome matrix, it is natural to ask which of these two
components contribute most to the observed performance.
We have explored this question by examining two restricted
CGS methods, one employing only the local connectome
(LOC-ONLY) and one employing only the tractography based
connectome (TR-ONLY)2. Results are given in table V. As can
be seen, the LOC-ONLY method performs worse than CGS in
terms of both localization error and saliency, by these measures
the LOC-ONLY performance is similar to that of the WMN
method. Interestingly, the TR-ONLY method shows a lower
median localization error than CGS (though not statistically
significant), but also a statistically significantly lower saliency.
Taken together, these show that the tractography-based connec-
tome is definitely an important contributor to the performance
of the CGS method, but that both local and tractography-based
components are important.

VI. CONCLUSIONS

We have introduced a novel approach for EEG source
estimation which uses a prior penalty on cortical activity based
on anatomical connectivity derived from white matter fiber
tractography. After constructing the cortical connectome graph
with vertices identified with cortical patches, we defined a

2Method LOC-ONLY was implemented by fixing λtr to a small fixed
constant (5 orders of magnitude below its typically estimated value), method
TR-ONLY was similarly implemented by fixing λloc

graph smoothing prior which penalizes the weighted sum of
squares of differences in source activity across the edges of the
graph. In combination with a quadratic data fidelity term, this
penalty leads to a closed-form linear source estimate we call
the cortical graph smoothing (CGS) method. We have illus-
trated its performance on estimating motor potential sources in
a button-pressing task, and compared it to the minimum norm,
weighted minimum norm, LORETA and sLORETA methods,
employing quantitative measures of localization accuracy and
peak saliency. We have found the CGS approach to give sta-
tistically significantly improved localization accuracy relative
to the minimum norm, and equivalent localization accuracy
to the remaining comparison methods. In contrast, the peak
saliency is significantly greater for the CGS approach than
all the comparison methods except the minimum norm, which
shown similar saliency.

The benefits of combining the EEG source localization with
the anatomical connectivity were demonstrated by utilizing
connectivity matrices computed from DTI tractography. This
model is well known to be an oversimplification of the white
matter architecture. Particularly, DTI is unable to represent
overlapping, interdigitated, fanning or crossing fascicles. Our
framework could, however, be very easily extended to employ
connectivities computed from tractography performed with
other techniques proposed to overcome the limitation of DTI,
such as Multiple fascicle models [41], [42], DSI [43], Q-Ball
[44] or Constrained Spherical Deconvolution [7]. To the extent
that the good performance of the CGS reflects correct repre-
sentation of the underlying anatomical connectivity, we believe
that the CGS approach should show improvement when based
on connectome matrices utilizing more accurate tractographic
methods. However, exactly how much improvement could be
gained is an open question for further research.

Similarly, the underlying structure of the CGS is not de-
pendent on the particular set of tissue segmentation and head
model physics tools that were employed. While we have
used proprietary, in-house tools specifically developed for the
overall tissue segmentation and forward modeling workflow,
there is no fundamental obstacle for many of these steps to be
done with more openly available software (e.g. freesurfer ).

There are many opportunities for future research extending
the CGS methodology described here. As the CGS estimate
(10) uses scalp voltages ϕ defined at a single timepoint,
it does not exploit temporal regularity of the underlying
brain activation. In future work we will incorporate tem-
poral smoothness into the CGS penalty by constructing a
spatiotemporal connectome graph. The vertices of this aug-
mented spatiotemporal connectome graph may be formed as
the union of multiple copies of the vertex set, taking one
such copy for each timepoint. In this way, the spatiotemporal
vertices would be indexed by both cortical patch number and
by timepoint. Edges of the spatiotemporal graph could be
constructed by connecting each spatiotemporal vertex to its
appropriate neighbors at the same timepoint, and in addition
connecting each spatiotemporal vertex to the vertices repre-
senting its immediate temporal neighbors (i.e. the two vertices
representing the same cortical patch, but at the previous and
following timepoints). Using the same CGS approach with this
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augmented spatiotemporal graph would introduce a penalty
on time derivatives of the source currents, yielding a joint
spatiotemporal estimation procedure.

The CGS method described in this work used a purely cor-
ticocortical connectome graph. Ignoring subcortical structures,
in particular the thalamus, gives an incomplete representation
of brain connectivity. While the activation of subcortical struc-
tures does not directly contribute to observed EEG (as they
lack the laminar organization necessary to generate coherent
dipolar currents), it may influence cortical activity and thus
indirectly affect the EEG. Incorporating such effects within
the CGS framework will be considered in future work.

Finally, while the CGS penalty in this paper was used
only for EEG analysis, the fundamental idea of exploiting
anatomical connectivity to build source activity priors may
be applied to other functional imaging modalities. Extending
CGS to use with MEG would be very straightforward, a
more interesting challenge would be to investigate its use for
estimating fMRI activation.

APPENDIX A
COMPUTATION OF DERIVATIVES FOR L-CURVE

Our optimization of the curvature function κs employs
analytic formulae for derivatives of the L-curve coordinates
ρi and ηi. Straightforward differentiation of (13) yields

κ′s =
(η′2s + ρ′2s )(η′sρ

′′′
s − ρ′sη′′′s )− 3(η′sρ

′′
s − ρ′sη′′s )(η′sη

′′
s + ρ′sρ

′′
s )

(η′2s + ρ′2s )5/2
,

(15)
showing that κ′s may be computed from the first three deriva-
tives of ρs and ηs. Assuming i indicating the active constant
λi is fixed, we write λ = λi, L = Li, and H =

∑
j 6=i λjL,

so that the CGS estimate (as a function of the active con-
stant λ) is J(λ) = (KTK + H + λL)−1KTφ. We write
N = (KTK +H + λL)−1. The L-curve coordinates are then
η(λ) = J(λ)TLJ(λ) and ρ(λ) = ||KJ(λ)− φ||2.

We develop expressions for the unscaled derivatives ρ(k),
η(k) for k = 1, 2, 3; scaled derivatives are then given by ρ(k)

s =
ρ
(k)
s /ρmax, η(k)

s = η
(k)
s /ηmax. As ρ(λ) = (KJ−φ)T (KJ−φ)

is dependent on λ only through J , we may compute

ρ′ = 2(KJ − φ)TKJ ′

ρ′′ = 2(KJ − φ)TKJ ′′ + 2(KJ ′)TKJ ′ (16)

ρ′′′ = 6(KJ ′)TKJ ′′ + 2(KJ − φ)TJ ′′′

and

η′ = 2JTLJ ′

η′′ = 2J ′TLJ ′ + 2JTLJ ′′ (17)

η′′′ = 6J ′TLJ ′′ + 2JTLJ ′′′.

Completion of these expressions relies on computing deriva-
tives of J = NKTφ. Using the formula for differentiation of
matrix inverse [45]

∂Y −1

∂x
= −Y −1 ∂Y

∂x
Y −1 (18)

we see
∂N

∂λ
= −NLN. (19)

Repeated differentiation and use of 19 yields

J ′ = −NLNKTφ = −NLJ
J ′′ = 2NLNLNKTφ = 2(NL)2J (20)

J ′′′ = −6NLNLNLNKTφ = −6(NL)3J

Inserting the relations from (20) into (17) and (16) yields the
desired closed-form expressions for ρ(k) and η(k).

We note finally that the full statements of these exact
expressions involve multiple matrix multiplications. Naive left-
to right matrix multiplication for these expressions can yield
very inefficient computation. Additionally, explicitly forming
the inverse matrix N is inadvisable for reasons of both
numerical accuracy and computational efficiency. The actual
scheme used to compute these expressions employed judicious
use of order of matrix multiplication, saving of partial results,
and use of Gaussian elimination in lieu of explicit forming
and multiplying by N , to enable more efficient evaluation.

APPENDIX B
PARALLEL TRACT COMPUTATION

Computing the whole-brain tractography as described in
section III-B produces millions of tracts (mean Ntracts =
3.65×106, stdev = 7.9×105, averaged over 18 subjects), and is
computationally demanding. With the parameters used in this
work, the tractography required 2.5 days to complete when
running on a single cpu core (2.6 GHz Intel Xeon). We have
implemented a simple scheme for parallelizing this computa-
tion across multiple 12-core nodes of the ACISS system3 at
the University of Oregon, a large heterogenous computational
cluster consisting of approximately 200 nodes each of which
have 12 or 36 cpu cores. We achieved this parallelism in
two stages, first via a multithreaded implementation of the
tractography capable of exploiting all 12 cores on a single
node. We then achieved parallelism across nodes by dividing
the binary mask image indicating the seed voxels into N
pieces, running the multicore tractography in parallel on N
separate nodes, and later combining the output tracts. For the
results in this paper we used N = 50 nodes, giving an overall
speedup of 600x relative to a single core, and allowing the
tractography to complete in under 5 minutes.

APPENDIX C
COMPARISON SOURCE ESTIMATION METHODS

For completeness, we briefly describe the details of the
comparison source estimation methods used in this work. The
MN, WMN and LORETA methods, as well as the proposed
CGS method, can all be described as variational approaches
using quadratic regularization. In particular, these methods all
solve the minimization

J∗ = argmin
J
||φ−KJ ||2 + λJTWJ, (21)

3Supported by a Major Research Instrumentation grant from the National
Science Foundation, Office of Cyber Infrastructure, ”MRI-R2: Acquisition
of an Applied Computational Instrument for Scientific Synthesis (ACISS),”
Grant #: OCI-0960354
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with linear solution

J∗ = (KTK + λW )−1KTφ, (22)

and differ only in their choices for the matrix W .
This implies that optimal regularization constants for MN,

WMN and LORETA can be determined by the (unmodified)
L-curve method described in section IV-A, we have used this
approach for all the results in this paper.

1) Minimum Norm: The minimum norm method (also
known as ridge regression or Tikhonov regularization in the
wider statistical literature) is given by taking W to be the
identity matrix, so that the regularization term is simply
proportional to the sum of squares of J .

2) Weighted Minimum Norm: The weighted minimum
norm takes W to be diagonal, but with varying values so
that the squares of different dipole sources may be weighted
differently. While different weightings can be used, we follow
the approach described in [1] with weights given by the re-
ciprocal of the sum of squares of each dipoles projection onto
the electrodes, i.e. Wj,j =

(∑
iK

2
i,j

)−1/2
. This procedure

is motivated by the desire to undo bias towards superficial
sources, which is a known drawback of the minimum norm.

3) LORETA: The LORETA method [46] employs regular-
ization based on the 3D discrete Laplacian operator, but also
using lead-field matrix normalization as seen for the WMN.
Because of this use of the 3D discrete Laplacian, LORETA is
defined for volumetric dipoles and is not applicable to the cor-
tical surface-normal dipole sets used elsewhere in this work.
For LORETA, W = ETDTDE, where D corresponds to the
Laplacian operator and E is a diagonal matrix corresponding
to the lead-field matrix normalization. E is constant over
triples of indices corresponding to each dipole. It be written
using the Kronecker product as E = Ẽ⊗I3, where the Nd×Nd
diagonal matrix Ẽ is given by

Ẽk,k =

 Ne∑
i=1

∑
j∈η(k)

K2
i,j

−1/2

,

η(k) = {3k − 2, 3k − 1, 3k} are the indices for the x, y, z
components of the kth dipole, and K is the Ne × 3Nd lead-
field matrix. Similarly, D is specified by D = D̃⊗I3 where D̃
is the matrix for the 3D discrete Laplacian operator employing
a 7-point stencil.

4) sLORETA: The sLORETA approach [47] differs from
the previous methods in that it is not given as the solution to a
variational problem with quadratic regularization. Despite the
similarity in name to LORETA, sLORETA is instead based
on taking the result from the minimum norm solution, and
standardizing each estimated dipole. This is done by dividing
by the expected variance of the minimum norm estimates for
each dipole, under the assumption that the unknown sources
each have unit variance. The sLORETA estimate is given
by J∗sloreta = STmnφ, where Tmn = (KTK + λI)−1KT

is the linear estimator for the minimum norm solution. The
standardization is performed by the diagonal matrix S given
by Si,i = C

−1/2
i,i , for C = TmnK. For the sLORETA, we

use the same regularization constant as was computed to be
optimal for the minimum norm solution.
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